Abstract:
A substrate device is designed by identifying one or more criteria for handling of a transient electrical event on the substrate device. The one or more criteria may be based at least in part on an input provided from a designer. From the one or more criteria, one or more characteristics may be determined for integrating VSD material as a layer within or on at least a portion of the substrate device. The layer of VSD material may be positioned to protect one or more components of the substrate from the transient electrical condition.
Abstract:
An electroplating process is performed using a substrate that includes a thickness of voltage switchable dielectric (VSD) material having photoactive components that are dispersed, mixed or dissolved in a binder of the VSD material. A pattern of conductive elements may be formed on the substrate by switching the VSD material from a dielectric state to a conductive state using, in part, voltage generated by directing light onto the thickness and VSD material.
Abstract:
A composition of voltage switchable dielectric (VSD) material that utilizes semi-conductive or conductive materials that have a relatively high aspect ratio for purpose of enhancing mechanical and electrical characteristics of the VSD material.
Abstract:
Ferroic circuit elements that include a set of conductive structures that are at least partially embedded within a ferroic medium are disclosed. The ferroic medium may be a voltage switched dielectric material that includes ferroic particles in accordance with various embodiments. A ferroic circuit element may be at least partially embedded within a substrate in accordance with embodiments of the current invention as an embedded ferroic circuit element. An embedded ferroic circuit element that is an inductor in accordance with embodiments of the current invention may be denoted as an embedded ferroic inductor. An embedded ferroic circuit element that is a capacitor in accordance with embodiments of the current invention may be denoted as an embedded ferroic capacitor.
Abstract:
Various disclosed aspects provide for protecting components (e.g., integrated circuits) from spurious electrical overvoltage events, such as electrostatic discharge. Embedded components with voltage switchable dielectric materials may protect circuits against electrostatic discharge.
Abstract:
A composition of voltage switchable dielectric (VSD) material that comprises a concentration of core shelled particles that individually comprise a conductor core and a conductor shell, so as to form a conductor-on- conductor core shell particle constituent for the VSD material.
Abstract:
A composition of voltage switchable dielectric (VSD) material that comprises a concentration of core shelled particles that individually comprise a conductor core and a shell, the shell of each core shelled particle being (i) multilayered, and/or (ii) heterogeneous. As depicted, VSD material 100 includes matrix binder 105 and various types of particle constituents, dispersed in the binder in various concentrations. The particle constituents of the VSD material may include a combination of conductive particles 110, semiconductor particles 120, nano-dimensioned particles 130 and/or core shelled particles 140. In some implementations, the core shelled particles may substitute for some or all of the conductive particles. As an alternative or variation, the VSD composition may omit the use of conductive particles, semiconductive particles, or nano-dimensioned particles, particularly with the presence of a concentration of core shelled particles. Thus, the type of particle constituent that are included in the VSD composition may vary, depending on the desired electrical and physical characteristics of the VSD material. For example, some VSD compositions may include conductive particles, but not semiconductive particles and/or nano-dimensioned particles (like carbon nanotube). Still further, other embodiments may omit use of conductive particles.
Abstract:
One or more embodiments provide for a composition that includes (i) organic material that is conductive or semi-conductive, and (ii) conductor and/or semiconductor particles other than the organic material. The organic material and the conductor and/or semiconductor particles are combined to provide the composition with a characteristic of being (i) dielectric in absence of a voltage that exceeds a characteristic voltage level, and (ii) conductive with application of the voltage exceeding the characteristic voltage level.
Abstract:
Embodiments described include a non-polymeric voltage switchable dielectric (VSD) material comprising substantially of a grain structure formed from only a single compound, processes for making same, and applications for using such non-polymeric VSD materials.