Abstract:
Embodiments disclosed herein generally relate to voltage switchable dielectric (VSD) materials and supporting impedance elements, and to structures, methods and devices employing voltage switchable dielectric materials and supporting impedance elements to achieve protection against ESD events, wherein the VSD materials and/or supporting impedance elements are incorporated in first level and/or second level packages, and wherein the first level package may be a die attached to a substrate and the second level package may be a circuit board to which the first level package is attached.
Abstract:
Embodiments described include a non-polymeric voltage switchable dielectric (VSD) material comprising substantially of a grain structure formed from only a single compound, processes for making same, and applications for using such non-polymeric VSD materials.
Abstract:
A substrate device includes an embedded layer of VSD material (230) that overlays a conductive element or layer (240) to provide a ground. An electrode (210), connected to circuit elements that are to be protected, extends into the thickness of the substrate to make contact with the VSD layer. When the circuit elements are operated under normal voltages, the VSD layer is dielectric and not connected to ground. When a transient electrical event occurs on the circuit elements, the VSD layer switches instantly to a conductive state, so that the first electrode is connected to ground.
Abstract:
Various aspects provide for incorporating a VSDM into a substrate to create an ESD-protected substrate. In some cases, a VSDM is incorporated in a manner that results in the ESD-protected substrate meeting one or more specifications (e.g., thickness, planarity, and the like) for various subsequent processes or applications. Various aspects provide for designing a substrate (e.g., a PCB) incorporating a VSDM, and adjusting one or more aspects of the substrate to design a balanced, ESD-protected substrate. Certain embodiments include molding a substrate having a VSDM layer into a first shape.
Abstract:
A composition of voltage switchable dielectric (VSD) material that comprises Boron. According to embodiments, VSD material is formulated that includes particle constituents that include one or more of Boron-nitride polymers, Boron nanotubes, and/or Boron nanoparticles.
Abstract:
A composition is provided that includes a polymer binder, and one or more classes of particle constituents. At least one class of particle constituents includes semiconductive particles that individually have a band gap that is no greater than 2 eV. As VSD material, the composition is (i) dielectric in absence of a voltage that exceeds a characteristic voltage level, and (ii) conductive with application of said voltage that exceeds the characteristic voltage level.
Abstract:
A substrate device is designed by identifying one or more criteria for handling of a transient electrical event on the substrate device. The one or more criteria may be based at least in part on an input provided from a designer. From the one or more criteria, one or more characteristics may be determined for integrating VSD material as a layer within or on at least a portion of the substrate device. The layer of VSD material may be positioned to protect one or more components of the substrate from the transient electrical condition.
Abstract:
Embodiments described herein provide for flexible circuits and flexible substrates comprising VSD material that has superior characteristics for its use as an integral structural component of a device.
Abstract:
Embodiments disclosed herein generally relate to structures, methods and devices employing a voltage switchable dielectric material to achieve vertical and/or dual switching protection against ESD and other overvoltage events.
Abstract:
A composition of voltage switchable dielectric (VSD) material that comprises a concentration of core shelled particles that individually comprise a conductor core and a conductor shell, so as to form a conductor-on- conductor core shell particle constituent for the VSD material.