Abstract:
Cationic Group 4 or Lanthanide metal catalysts containing a single, delocalized Π-bonded group are prepared by contacting a metal complex with a carbonium salt of a compatible, non-coordinating anion.
Abstract:
Biscyclopentadienyl, Group 4 transition metal complexes are formed by contacting a biscyclopentadienyl Group 4 metal halide, hydrocarbyl, hydrocarbyloxy or amide complex with a conjugated diene. Uniquely, the ansa-rac diastereomer is selectively isolated and may be reconverted to the halide form if desired. When combined with standard activating cocatalysts or activated with an activating technique, the complexes form catalysts for polymerizing olefins, diolefins and/or acetylenically unsaturated monomers.
Abstract:
Organic compounds are hydrogenated in the presence of certain bis(pentadienyl) divalent Group IV metal complexes having π-bound, neutral, conjugated diene ligands. These complexes are effective hydrogenation catalysts for polymers containing ethylenic unsaturation. They further provide for selective hydrogenation of ethylenic unsaturation sites in the presence of aromatic groups.
Abstract:
Bitumens can be blended with interpolymers prepared from at least one olefin and at least one vinylidene aromatic monomer and, optionally, at least one diene. The interpolymers prepared from monomers containing a diene are new compositions of matter. When the interpolymers prepared from monomers containing a diene are blended with a bitumen, the blends are crosslinkable.
Abstract:
The present invention pertains to sulfonated substantially random interpolymers made from monomer components comprising from 1 to 65 mole percent of (a) at least one vinyl or vinylidene aromatic monomer, or (b) at least one hindered aliphatic or cycloaliphatic vinylidene monomer, or (c) a combination of at least one vinyl or vinylidene aromatic monomer and at least one hindered aliphatic or cycloaliphatic vinylidene monomer, and from 35 to 99 mole percent of at least one aliphatic α-olefin having from 2 to 20 carbon atoms; and optionally, from 0 to 20 mole percent of a diene containing from 4 to 20 carbon atoms; wherein the sufonated interpolymer contains at least one mer (or moiety) of a group represented by the formula -SO3-M where M is hydrogen or a group 1, 7 or 12 metal in ionic form or combination thereof. The present invention also pertains to blends of these polymers with polyamides and polyolefins. These blends are useful as materials which can be formed into a wide variety of plastic articles which take advantage of the combination of toughness, heat resistance, and solvent resistance. The present invention also pertains to articles prepared from substantially random interpolymers which are surface sulfonated.
Abstract:
Bitumens can be blended with interpolymers prepared from at least one olefin and at least one vinylidene aromatic monomer and, optionally, at least one diene. The interpolymers prepared from monomers containing a diene are new compositions of matter. When the interpolymers prepared from monomers containing a diene are blended with a bitumen, the blends are crosslinkable.
Abstract:
A polymer blend composition comprising: (a) from 0.5 to 99 percent by weight, based on the total weight of (a), (b), and (c), of an aliphatic α-olefin homopolymer or interpolymer, or an interpolymer of an α-olefin and a non-aromatic monomer interpolymerizable therewith; (b) from 0.5 to 99 percent by weight, based on the total weight of (a), (b), and (c), of a homopolymer or interpolymer of monovinylidene aromatic monomers, or an interpolymer of monovinylidene aromatic monomer and a monomer interpolymerizable therewith other than an aliphatic α-olefin; and (c) from 0.5 to 99 percent by weight, based on the total weight of (a), (b), and (c), of a substantially random interpolymer comprising an α-olefin and a vinylidene aromatic monomer. An expandable composition, comprising such polymer blend composition and an expanding agent; a foamed composition obtained by subjecting such an expandable composition to a foaming process; an article of manufacture molded from such a polymer blend composition; and a method of packaging using such a polymer blend composition.
Abstract:
Group 4 metal complexes comprising an indenyl group substituted in the 2 or 3 position with at least one group selected from hydrocarbyl, perfluoro substituted hydrocarbyl, silyl, germyl and mixtures thereof, said indenyl group further being covalently bonded to the metal by means of a divalent ligand group, catalytic derivatives thereof and their use as olefin polymerization catalysts are disclosed.
Abstract:
Elastic ethylene polymers are disclosed which have processability similar to highly branched low density polyethylene (LDPE), but the strength and toughness of linear low density polyethylene (LLDPE). The polymers have processing indices (PI's) less than or equal to 70 percent of those of a comparative linear ethylene polymer and a critical shear rate at onset of surface melt fracture of at least 50 percent greater than the critical shear rate at the onset of surface melt fracture of a traditional linear ethylene polymer at about the same I2, density and Mw/Mn. The novel polymers can also have from 0.01 to 3 long chain branches/1000 total carbons and have higher low/zero shear viscosity and lower high shear viscosity than comparative linear ethylene polymers. The novel polymers can also be characterized as having a melt flow ratio, I10/I2, ≥ 5.63, a molecular weight distribution, Mw/Mn, defined by the equation: Mw/Mn ≤ (I10/I2) - 4.63, a critical shear stress at onset of gross melt fracture greater than 4 x 106 dyne/cm2, and a single DSC melt peak between -30 °C and 150 °C.