Abstract:
What is disclosed is a novel video processing system and method wherein a plurality of image frames of a video captured using a video camera with a spatial resolution of (M×N) in the (x, y) direction, respectively, and a temporal resolution (T) in frames per unit of time. A first and second magnification factor f1, f2 are selected for spatial enhancement in the (x, y) direction. A third magnification factor f3 is selected for a desired temporal enhancement in (T). The video data is processed using a dictionary comprising high and low resolution patch cubes which are used to induce spatial and temporal components in the video where no data exists. A high resolution course video X0 is generated which has an enhanced spatial resolution of (f1* M)×(f2*N) and an enhanced temporal resolution of (f3*T) frames. The course high resolution video is then smoothed, when found required, to generate a smoothed high resolution video.
Abstract:
What is disclosed is a system and method for classifying a time-series signal as being ventricular premature contraction, ventricular tachycardia, or normal sinus rhythm in a patient being monitored for cardiac function assessment. One embodiment hereof involves the following. A time-series signal is received which contains frequency components that relate to the function of the subject's heart. Signal segments of interest are identified in the time-series signal. Time-domain features, frequency-domain features, and non-linear cardiac dynamics are extracted from each of the identified signal segments of interest. The extracted features and dynamics become components of at least one feature vector associated with each respective signal segment of interest. Signal segments are then classified as one of: ventricular premature contraction, ventricular tachycardia, and normal sinus rhythm, based on each signal segment's respective feature vector(s).
Abstract:
What is disclosed is a system and method for determining respiration rate from a video of a subject. In one embodiment, a video is received comprising plurality of time-sequential image frames of a region of a subject's body. Features of pixels are extracted from that region from each image frame and vectors formed from these features. Each image frame has an associated feature vector. A N×M video matrix of the vectors of length N is constructed such that a total number of columns M in the video matrix correspond to a time duration over which the subject's respiration rate is to be determined. The video matrix is processed to obtain a matrix of eigenvectors where principal axes of variations due to motion associated with respiration are contained in a first few eigenvectors. One eigenvector is selected from the first few eigenvectors. A respiration rate is obtained from the selected eigenvector.
Abstract:
What is disclosed is a system and method for determining arterial pulse transit time (PTT) for a subject. In one embodiment, time-series signals are received for each of a proximal and distal arterial site of a subject's body which represent blood volume changes in the microvascular tissue at each site. A proximal and distal analytic signal is obtained which has a first component being a waveform of the respective time-series signal and a second component being a transform of the respective waveform. A phase function is determined for the first and second components of each analytic signal. The phase function obtained for the proximal waveform is then subtracted from the phase function obtained for the distal waveform to get a phase difference. The phase difference is analyzed with the subject's heart rate to determine an arterial pulse wave transit time between the two proximal and distal sites.
Abstract:
What is disclosed is a system and method for estimating cardiac pulse rate from a video of a subject being monitored for cardiac function. In one embodiment, batches of overlapping image frames are continuously received and processed by isolating regions of exposed skin. Pixels of the isolated regions are processed to obtain a time-series signal per region and a physiological signal is extracted from each region's time-series signals. The physiological signal is processed to obtain a cardiac pulse rate for each region. The cardiac pulse rate for each region is compared to a last good cardiac pulse rate from a previous batch to obtain a difference. If the difference exceeds a threshold, the cardiac pulse rate is discarded. Otherwise, it is retained. Once all the regions have been processed, the retained cardiac pulse rate with a minimum difference becomes the good cardiac pulse rate for comparison on a next iteration.
Abstract:
What is disclosed is a handheld device having at least one illuminator for projecting source light and a video camera for capturing images of a region of interest of a subject being monitored for a desired physiological function. The handheld device is positioned such that light reflected off the subject's region of interest is received by a sensor. A determination is then made as to how a physiological signal extracted from video images captured by the video camera can be improved by an adjustment to the illuminator with respect to intensity, spectrally, spatially, and/or temporally, to improve accuracy of a measurement of a desired physiological function. The illuminator is adjusted and video images of a region of interest are captured by the video camera and processed to extract a physiological signal corresponding to that physiological function. That signal is used to monitor the desired physiological function. Various embodiments are disclosed.
Abstract:
A method for reconstructing an image of a scene captured using a compressed sensing device. A mask is received which identifies at least one region of interest in an image of a scene. Measurements are then obtained of the scene using a compressed sensing device comprising, at least in part, a spatial light modulator configuring a plurality of spatial patterns according to a set of basis functions each having a different spatial resolution. A spatial resolution is adaptively modified according to the mask. Each pattern focuses incoming light of the scene onto a detector which samples sequential measurements of light. These measurements comprise a sequence of projection coefficients corresponding to the scene. Thereafter, an appearance of the scene is reconstructed utilizing a compressed sensing framework which reconstructs the image from the sequence of projection coefficients.
Abstract:
What is disclosed is a wireless cellular device capable of determining a volume of an object in an image captured by a camera of that apparatus. In one embodiment, the present wireless cellular device comprises an illuminator for projecting a pattern of structured light with known spatial characteristics, and a camera for capturing images of an object for which a volume is to be estimated. The camera is sensitive to a wavelength range of the projected pattern of structured light. A spatial distortion is introduced by a reflection of the projected pattern off a surface of the object. And processor executing machine readable program instructions for performing the method of: receiving an image of the object from the camera; processing the image to generate a depth map; and estimating a volume of the object from the depth map. A method for using the present wireless cellular device is also provided.
Abstract:
What is disclosed is a system and method for processing a time-series signal generated by video images captured of a subject of interest in a non-contact, remote sensing environment such that the existence of a cardiac arrhythmia can be determined for that subject. In one embodiment, a time-series signal generated is received. The time-series signal was generated from video images captured of a region of exposed skin where photoplethysmographic (PPG) signals of a subject of interest can be registered. Signal separation is performed on the time-series signal to extract a photoplethysmographic signal for the subject. Peak-to-peak pulse points are detected in the PPG signal using an adaptive threshold technique with successive thresholds being based on variations detected in previous magnitudes of the pulse peaks. The pulse points are then analyzed to obtain peak-to-peak pulse dynamics. The existence of cardiac arrhythmias is determined for the subject based on the pulse dynamics.
Abstract:
What is disclosed is a system and method for estimating a biological parameter vector for a biophysics model using reflectance measurements obtained from a reflectance-based spectral measurement system. The present method uses a semi-empirical biophysics model to describe skin properties and estimate reflectance spectra and reduces the dimensionality of the estimated and measured reflectance spectra using basis vectors for computational efficiency. A mixture of algorithms are employed to generate an initial set of parameters which, in turn, are further refined using an iterative control based technique in which the error between the parameters derived from the measured spectra are compared to the parameters calculated from the estimated spectra. These errors are then processed to generate a small delta to the initial set of parameters. The process is repeated until an error between the estimated virtual biological parameters and the measured virtual biological parameters falls to zero or is otherwise below a pre-defined threshold level.