Abstract:
What is disclosed a system and method for estimating a position (or pose) of a camera relative to a surface upon which an object rests in an image captured by that camera such that a volume can be estimated for that object. In one embodiment, a matrix K is determined from parameters intrinsic to a camera used to capture image. An amount of a camera translation T is determined with respect to a set of real-world coordinates in (X,Y,Z). An amount of a camera rotation matrix R is determined from camera angles measured with respect to the real-world coordinates. A distance Zc of the camera at location (i,j) can then be estimated. A volume of the object in an image of that object can be estimated from the camera pose.
Abstract:
What is disclosed is a wireless cellular device capable of determining a volume of an object in an image captured by a camera of that apparatus. In one embodiment, the present wireless cellular device comprises an illuminator for projecting a pattern of structured light with known spatial characteristics, and a camera for capturing images of an object for which a volume is to be estimated. The camera is sensitive to a wavelength range of the projected pattern of structured light. A spatial distortion is introduced by a reflection of the projected pattern off a surface of the object. And processor executing machine readable program instructions for performing the method of: receiving an image of the object from the camera; processing the image to generate a depth map; and estimating a volume of the object from the depth map. A method for using the present wireless cellular device is also provided.
Abstract:
What is disclosed is a system and method for processing a time-series signal generated by video images captured of a subject of interest in a non-contact, remote sensing environment such that the existence of a cardiac arrhythmia can be determined for that subject. In one embodiment, a time-series signal generated is received. The time-series signal was generated from video images captured of a region of exposed skin where photoplethysmographic (PPG) signals of a subject of interest can be registered. Signal separation is performed on the time-series signal to extract a photoplethysmographic signal for the subject. Peak-to-peak pulse points are detected in the PPG signal using an adaptive threshold technique with successive thresholds being based on variations detected in previous magnitudes of the pulse peaks. The pulse points are then analyzed to obtain peak-to-peak pulse dynamics. The existence of cardiac arrhythmias is determined for the subject based on the pulse dynamics.