Abstract:
The invention relates to scratch-resistant coatings obtainable by radiative curing, by reaction of (meth)acrylates with mercapto groups, to processes for production thereof and to the use thereof.
Abstract:
Certain embodiments of the invention may include systems and methods curing a coated optical fiber. The method includes drawing the coated optical fiber through a gas chamber filled with a predetermined gas, drawing the fiber through a cure tube coupled to the gas chamber, and purging at least a portion of an inner surface of the cure tube with a purge gas as the coated optical fiber is drawn through the cure tube.
Abstract:
A process for producing polymeric films by applying a liquid composition onto a surface of a substrate under vacuum conditions in a vacuum chamber. The composition has a first component which is polymerizable or crosslinkable in the presence of a sufficient amount of an acid; and a cationic photoinitiator which generates an acid upon exposure to ultraviolet radiation, electron beam radiation or both to cause polymerizing or crosslinking of the first component. A gas which emits ultraviolet radiation upon exposure to electron beam radiation is introduced into the vacuum chamber. The composition and the gas are exposed to electron beam radiation to cause the cationic photoinitiator to generate an amount of an acid to cause polymerizing or crosslinking of the first component. The composition is exposed to both electron beam radiation and gas-generated ultraviolet radiation and cured.
Abstract:
The present provides a bondably coated metallic member comprising a metallic member having a low surface energy polymeric coating, said low surface energy polymeric coating having been surface activated on at least a portion thereof, and having on said surface-activated portion a bondable high surface energy polymeric coating. The present invention also provides a bondably-coated metallic pipe comprising metallic pipe having a low surface energy mainline polymeric coating thereon extending over the pipe except at a bare zone adjacent each end of the pipe that is free from said main-line coating; a portion of said mainline coating adjacent each bare zone having been surface activated and having on said surface activated portion a bondable high surface energy polymeric coating.
Abstract:
Methods for depositing a carbon-based seasoning layer on exposed surfaces of the optical components within a UV processing chamber are disclosed. In one embodiment, the method includes flowing a carbon-containing precursor radially inwardly across exposed surfaces of optical components within the thermal processing chamber from a circumference of the optical components, exposing the carbon-containing precursor to a thermal radiation emitted from a heating source to form a carbon-based seasoning layer on the exposed surfaces of the optical components, exposing the carbon-based seasoning layer to ozone, wherein the ozone is introduced into the processing chamber by flowing the ozone radially inwardly across exposed surfaces of optical components from the circumference of the optical components, heating the optical components to a temperature of about 400°C or above while flowing the ozone to remove the carbon-based seasoning layer from exposed surfaces of the optical components.
Abstract:
The invention relates to an illumination chamber (10) for hardening radiation-cureable coatings on components (14) having surfaces which are oriented in different directions. The invention also relates to an illumination chamber (10) for hardening motor vehicle bodies coated with UV-paints, by means of UV-lamps. According to the invention, at least one reflector (20) is arranged in an inner chamber (18) of the illumination chamber (10). Said type of reflector (20) is preferably cone-shaped or alternatively can also can be pivoted about three spatial axes in a cardanic manner such that due to said reflector (20), shadow zones of the vehicle body which are normally inadequately exposed can be uniformly illuminated. The invention also relates to a hardening system (42, 42') for motor vehicle bodies, comprising said type of illumination chamber.
Abstract:
A process for producing polymeric films by applying a liquid composition onto a surface of a substrate under vacuum conditions in a vacuum chamber. The composition has a first component which is polymerizable or crosslinkable in the presence of a sufficient amount of an acid; and a cationic photoinitiator which generates an acid upon exposure to ultraviolet radiation, electron beam radiation or both to cause polymerizing or crosslinking of the first component. A gas which emits ultraviolet radiation upon exposure to electron beam radiation is introduced into the vacuum chamber. The composition and the gas are exposed to electron beam radiation to cause the cationic photoinitiator to generate an amount of an acid to cause polymerizing or crosslinking of the first component. The composition is exposed to both electron beam radiation and gas-generated ultraviolet radiation and cured.