Abstract:
A minute structure such as a cantilever 11 is formed on a silicon substrate 10 and heated by irradiating a laser beam to a part of the cantilever 11, by which the cantilever 11 is bent. The two bent cantilevers 11 are inserted into through holes 14 in a crystal substrate 10 formed in advance, and the tip end portions 15 thereof are heated. The heared tip end portions 15 become thicker and at the same time shorter, so that the crystal substrate 12 can be fixed to the silicon substrate 10 without play. By heating a part of the minute structure by such a method, plastic deformation is produced, so that bending and deforming can be performed. Thereby, a three-dimensional micromachined structure is constructed and assembled.
Abstract:
Controllable electromechanical adhesive devices including three-dimensional dielectrically-coated microstructures that are mechanically compliant are provided. The microstructures can be controlled to provide tunable electromechanical surface adhesion, allowing for dexterous gripping of microscale and/or macroscale objects. For example, the devices can tune the surface adhesion strength of one or more microstructures without complex mechanical actuation in a wide range of on/off ratios with low voltage. The devices can be configured as a force sensor capable of providing tactile feedback for determining the load applied against the microstructures by the surface of an object. For example, the devices can provide output indicative of changes in an electrical property of one or more microstructures for determining the applied load of an object. The devices can be pixelated or otherwise configured to provide localized force sensing and/or surface adhesion. Related systems and methods for controlling the disclosed electromechanical adhesive devices are also described.
Abstract:
A method of manufacturing a micro structure, includes the steps of: preparing separate first and second substrates, the first substrate having a first surface on which a first structural body having a first height and a second structural body having a second height greater than the first height of the first structural body are arranged, the second substrate having a second surface; then placing the first and second substrates to cause the first and second surfaces to face each other across the first and second structural bodies; and then bonding the first and second substrates to each other while compressing the second structural body in a height direction thereof between the first and second surfaces to cause the second structural body to have a height defined by the first structural body.
Abstract:
A method of manufacturing a micro structure, includes the steps of: preparing separate first and second substrates, the first substrate having a first surface on which a first structural body having a first height and a second structural body having a second height greater than the first height of the first structural body are arranged, the second substrate having a second surface; then placing the first and second substrates to cause the first and second surfaces to face each other across the first and second structural bodies; and then bonding the first and second substrates to each other while compressing the second structural body in a height direction thereof between the first and second surfaces to cause the second structural body to have a height defined by the first structural body.
Abstract:
An apparatus to hold hollow fibers for transporting fluid may include a channel such as a connecting channel, for example formed in a substrate, including extensions or ridges to hold a hollow fiber. The pullout force for the hollow fiber may exceed the mechanical strength of the hollow fiber. A method for making such a device, or for making a nanofluidic connector, may include forming or drilling holes on a substrate along a line, where the holes are generally perpendicular to the substrate and have a desired depth.
Abstract:
An apparatus including at least three deflectable members each configured to deflect during assembly with a component, and also configured to remain in contact with the component after assembly with the component. At least one of the deflectable members and the component has a thickness not greater than about 1000 microns.
Abstract:
A MEMS microconnector including a compliant handle and a deflectable connection member. The compliant handle is configured to frictionally engage a manipulation probe. The deflectable connection member includes a first end coupled to the handle and a second end configured to deflect and thereby engage a receptacle in response to disengagement of the manipulation probe from the handle.
Abstract:
A system and method which provide a general-purpose snap connector suitable for coupling microcomponents are disclosed. A snap connector is disclosed that is suitable for performing general assembly, including out-of-plane, 3-D assembly of microcomponents, wherein such microcomponents may be securely coupled together. That is, a snap connector is disclosed which enables microcomponents to be coupled in a manner that constrains undesirable movement of the coupled components relative to each other. Preferably, such a snap connector may be pressure fit with a receptacle (or aperture) of a mating component in a manner that constrains translational and rotational degrees of freedom of the mating component relative to the snap connector. A preferred embodiment provides a “preloaded” snap connector that may be utilized to perform general assembly of microcomponents. An alternative embodiments provides a non-preloaded snap connector suitable for performing general assembly of microcomponents. Still a further alternative embodiment provides a “squeeze” snap connector that is suitable for performing general assembly of microcomponents. Such snap connectors may be implemented as an integrated part of a microcomponent, or they may be implemented as separate, stand-alone snap connectors. For example, a dual-ended snap connector is disclosed herein, which may be coupled to a first microcomponent, and then used to couple the first microcomponent to a second microcomponent.
Abstract:
The present invention provides microfluidic devices, systems and methods for using the same, which facilitate the introduction of fluid to and from a microfluidic channel located within the microfluidic devices.