Abstract:
An air activating device comprising a wind tunnel (1) formed with a suction port and an exhaust port, a first corona discharge electrode pair (4) and a second corona discharge electrode pair (5) disposed in the wind tunnel (1) to generate corona discharge, and an ozone generating lamp (6) disposed in the wind tunnel to generate ozone, wherein the first corona discharge electrode pair (4), the ozone generating lamp (6) and the second corona discharge electrode pair (5) are disposed in the order mention in an air flowing direction from the suction port to the exhaust port, the first and second corona discharge electrode pairs (4, 5) respectively have discharge electrodes (41, 51) and counter electrodes (42, 52), and the discharge electrodes (41, 51) and counter electrodes (42, 52) are disposed in the order mentioned in the air flowing direction.
Abstract:
Retrofit apparatus for retrofitting an ozone generator to a spa, hot tub or similar facility is disclosed. Here, a fitting is threaded into an air inlet of a spa or hot tub, and covers provided for the water outlets to generally prevent outgassing. In another embodiment, an ozone-providing plug is provided to one water outlet of a spa or hot tub, with the air and other outlets being blocked. In addition, different configurations of ozone generator are disclosed. Particularly, one type ozone generator includes an inverted U-shaped apparatus so that heat from the ozone generator induces a chimney effect so as to cause the ozonated air to rise through a chimney and then settle into a selected area. Another ozone generator creates a low rate of airflow by “ion wind” in order to propel ozonated air into a system of piping in the absence of water flowing therethrough.
Abstract:
An apparatus and method for generating ozone is provided. An ozone generator comprises a substantially transparent element having ozone-generating means mounted on an inner element area and an outer element area. An enclosure is positioned over the element, and an oxygen-containing gas is directed through the inner element area, creating ozone from a portion of the oxygen-containing gas. The ozone and oxygen-containing gas is then redirected over the outer element area, so that the oxygen-containing gas is at least twice exposed to the ozone-generating means, thereby generating additional ozone.
Abstract:
An oxygen allotrope generator having a tube with an electrically grounded outer surface and an electrically positive inner surface. A plurality of corona reaction plates are spaced along the interior of the tube, the plates being longitudinally inter-connected by wires and being in electrical connection with the electrically positive inner surface of the tube. An outer jacket encloses the tube and provides a second linear pass for partially ozonated gas to flow in the generator. An alternative embodiment includes external distributed ground connections at the locations of the corona reaction.
Abstract:
A method for manufacturing ozone ice that is improved for its storage stability is provided. In the method, ice 11 including oxygen gas g2 as gas bubbles b is produced and the produced ice 11 is irradiated with ultraviolet radiation, then the oxygen gas g2 in the ice 11 is ozonized to manufacture ozone ice 1.
Abstract:
An electro chemical conversion cell that can break down certain gasses to provide ozone and monovalent oxygen from a supplied volume of a suitable 02-containing gas. The conversion cell is provided with at least one metal mesh electrode within a generator reaction chamber, and a power supply which is adapted to supply a high alternating electric current voltage to at least partially break-down O2 in the input gas to yield ozone. A fluid flow passage extends through the reaction chamber as a generally elongated passage through the reaction cavity. The fluid flow passage extends from an upstream end, where the O2-containing gas is initially supplied into the housing, to a downstream end where treated gas either flows outwardly therefrom under pressure or is evacuated from the housing. In a simplified construction, the fluid flow passage is delineated by a series of electrically insulating plates and/or spacers which are used to partition the reaction cavity.
Abstract:
A reactor produces a surface corona for emitting UV light and for the production of ozone by passing air or oxygen through the surface corona. The emitted UV light activates a photocatalyst coated on a surface facing a surface with embedded electrodes which generate the surface corona. The photocatalyst is a thin film of nanoparticle TiO2 with primary particle size of 0.02 to 0.2 μm was deposited on a substrate by a flame aerosol method. The method combines ozonation and photocatalysis to provide effective and efficient oxidation of alcohols and hydrocarbons to value added products. The method can also be used for air and water cleaning.
Abstract:
A starting circuit for an electric discharge lamp providing an electric current to a lamp having a first and a second filament. The circuit measures a lamp current and a filament temperature and then compares these against a reference voltage. When the lamp current is below a set threshold value, a relay contact disposed between the first and second filament is closed to direct the electric current through the first and second filaments to initiate pre-heating of the lamp. Once the filament temperature exceeds a set threshold, the relay contact is opened and the electric current passes through heated gas inside the lamp.
Abstract:
A starting circuit for an electric discharge lamp providing an electric current to a lamp having a first and a second filament. The circuit measures a lamp current and a filament temperature and then compares these against a reference voltage. When the lamp current is below a set threshold value, a relay contact disposed between the first and second filament is closed to direct the electric current through the first and second filaments to initiate pre-heating of the lamp. Once the filament temperature exceeds a set threshold, the relay contact is opened and the electric current passes through heated gas inside the lamp.
Abstract:
An ozone generator utilizing an ultraviolet light tube for generating ozone is disclosed. In this ozone generator, efficiency in converting oxygen to ozone is increased by imposing an electrical field around the light tube. This electrical field causes a theta pinch in the plasma of the light tube, increasing luminescence in the ultraviolet spectral range and exciting diatomic oxygen molecules passing through the electrical field. Thus excited, the diatomic oxygen is easier to disassociate and become converted to ozone.