Abstract:
A curved portion formed on a guide rail is sandwiched between an inscribed projection and a circumscribed projection. Therefore, a carrier plate can turn around a curving center of the inscribed projection. Even when the guide rail is twisted, an element to be guided and the carrier plate can turn in accordance with the twist, a prying force is reduced, and the carrier plate can vertically move smoothly.
Abstract:
A device comprising a guide having a first pair of substantially parallel running surfaces, which are placed along a first track at a lateral distance apart, and a second pair of substantially parallel running surfaces, which are placed along a second track at a lateral distance apart. The second pair of running surfaces extends, at a crossing or junction, transversely to the first pair of running surfaces. A carrier is displaceable over at least the running surfaces and has a bearing axle, extending transversely to the running surfaces, for fastening of a load, which bearing axle extends between the running surfaces. The device, close to the crossing junction, has a transport mechanism. The transport mechanism is movable between a take-up position in the first track, for load-bearing engagement with the carrier, and a delivery position in the second track, for release of the carrier. The invention further relates to a rail system and a transport mechanism.
Abstract:
A sliding block guide for openable motor vehicle roofs or vehicle hatches, with a guideway which has a guide channel (40), and a sliding block (11) which is movably guided in the guide channel along the guideway, the guideway has at least one essentially linear guideway area (47, 48) and at least one curved guideway area (49). To improve the curve handling capacity of the sliding block, the guide channel (40) is made wider in the area of the curved areas (49) of the guideway (12) than in the area of the essentially linear guideway areas (47, 48).
Abstract:
A sliding block guide for openable motor vehicle roofs or vehicle hatches, with a guideway which has a guide channel (40), and a sliding block (11) which is movably guided in the guide channel along the guideway, the guideway has at least one essentially linear guideway area (47, 48) and at least one curved guideway area (49). To improve the curve handling capacity of the sliding block, the guide channel (40) is made wider in the area of the curved areas (49) of the guideway (12) than in the area of the essentially linear guideway areas (47, 48).
Abstract:
The present invention is a window regulator mechanism for vertically moving a window panel mounted within a motor vehicle door. The mechanism comprises an elongated guide rail member mounted within the vehicle door and having a base portion with a pair of side flange portions. A first of the pair of side flange portions has a nose portion extending laterally outwardly therefrom. A second of the pair of side flange portions has a convex exterior surface. A window moving structure engages the window panel and has a base member and a pair of side leg portions extending from opposing sides thereof. One of the side leg portions has a nose-receiving groove formed in an inwardly facing surface thereof. The window moving structure is slidably mounted on the guide rail member. A manually operable actuating mechanism is constructed to slidably move the window moving structure vertically along the guide rail member. The nose portion of the guide rail member is received within the nose-receiving groove of the window moving structure and the convex exterior surface of the guide rail member is slidably engaged with an inwardly facing surface of another of the side leg portions of the window moving structure opposite the nose-receiving groove such that (1) relative pivotal movement between the guide rail member and the window moving structure about a fixed pivot axis extending longitudinally through the nose portion is permitted and (2) relative movement between the guide rail member and the window moving structure in a radial direction with respect to the fixed pivot axis is substantially restricted to thereby reduce vibrations which occur as a result of forcibly moving the vehicle door into closing engagement with a motor vehicle body.
Abstract:
Herein disclosed is a window regulator for regulating a glass pane, which comprises a guide rail including front and rear vertical parts and a horizontal part which extends between the front and rear vertical parts to constitute a generally U-shaped structure of the guide rail; front and rear holders slidably guided by the front and rear vertical parts of the guide rail; a first structure securing each of the front and rear holders to the window pane; a second structure for defining in the guide rail two cable guide grooves which extend throughout the entire length of the guide rail; two drive cables axially movably received in the respective cable guide grooves, the drive cables having given portions to which the front and rear holders are connected respectively; and drive means mounted on a given portion of the guide rail for axially moving the two drive cables in opposite directions.
Abstract:
Herein disclosed is an improved door window pane guide device which comprises a guide rail having a substantially right-angled side wall which is curled at its leading end portion to form a tubular guide portion, and a carrier unit which is movable along the guide rail together with a window pane secured to the carrier unit. The carrier unit has two plastic sliders which are respectively formed with aligned rectangular grooves into which the tubular guide portion of the guide rail is slidably received upon assembly of the window pane guide device. In order to prevent disengagement of the first and second sliders from the tubular guide portion of the guide rail, an axially extending lug portion is formed on each of the first and second sliders to narrow the entrance portion of the groove, or another slider is arranged between the first and second sliders, which has a right-angled head which slidably engages with the tubular guide portion in a manner to restrict displacement of the first and second sliders in a direction away from the tubular guide portion.
Abstract:
In an aspect, a lifter plate is provided that is capable of a relatively strong connection to a vehicle window. The lifter plate includes a lifter plate body including a first side wall and a second side wall configured to receive a vehicle window there between, a window holding member positionable in a locking position to prevent the withdrawal of the vehicle window from between the first and second side walls, and a locking member positioned to prevent the movement of the window holding member out of the locking position in the event of a force urging the withdrawal of the vehicle window from between first and second side walls.
Abstract:
In a window regulator, a positioner is provided between a pair of slider bases and a pair of windowpane holders and define a relative position therebetween in a forward/rearward direction of a vehicle; a vehicle-widthwise-directional wall is provided on each guide rail; and a pair of forward/rearward directional guide walls is provided on each slider base to hold an associated vehicle-widthwise-directional wall in the forward/rearward direction and to guide an associated slider base along an associated guide rail. A clearance in the forward/rearward direction between the vehicle-widthwise-directional wall of one guide rail and the forward/rearward-directional guide walls of one slider base is set smaller than that between the vehicle-widthwise-directional wall of the other guide rail and the forward/rearward-directional guide walls of the other slider base.
Abstract:
A window pane for a motor vehicle including plastic for closing a pane opening of a motor vehicle and which is moveable with a window lifter out of the pane opening includes a pane element enclosed by an outer edge and a device provided on the pane element for coupling the window pane to an adjusting mechanism of the window lifter. For coupling the window pane to the adjusting mechanism of the window lifter, a guide region is formed on a surface of the pane element via which the window pane is engageable with a guide device of the adjusting mechanism, displaceable in a direction of adjustment. The guide region forms at least one stop, which counteracts a pivoting of the window pane about an axis extending perpendicular to a plane of the window pane.