Abstract:
The present disclosure relates to a liquefied hydrogen storage tank, and more specifically, to a liquefied hydrogen storage tank which facilitates transportation of the storage tank by manufacturing the storage tank storing liquefied hydrogen in a doughnut shape, can improve the robustness of the storage tank and reduce the weight thereof by forming a vacuum layer, improves the temperature maintenance performance of liquefied hydrogen through the shape allowing a second tank unit to surround a first tank unit, and improves thermal insulation through the coating layer.
Abstract:
A pressure tank, particularly an elongated toroidal tank, with various lengths in X, Y, Z axes, includes bottoms connected with more than one connector, equipped with fixture connector pipes, holders for installation of the tank and cover, fixture cover, internal bottoms, internal casings, partitions. The external upper bottom and the external lower bottom form an external shell of the tank, with cross-sections having the shape of a rectangle with rounded vertices, whereas the internal casings are connected with the internal bottomw and/or with the external bottoms, preferably connected by the internal bottomw with middle tubes forming internal central connectors of the tank, separated by partition, and connector pipes are welded to tank walls so that the thickness of the external pipe wall is between 0.4 to 1.8 of the thickness of the walls of the tank elements.
Abstract:
This invention relates to methods of fabricating components of a pressure vessel using a dicyclopentadiene prepolymer formulation in which the purity of the dicyclopentadiene is at least 92% wherein the formulation further comprises a reactive ethylene monomer that renders the prepolymer formulation flowable at ambient temperatures and to pressure vessels that are fabricated by said methods.
Abstract:
The present invention is a tank suitable to contain high pressure fluids, especially for compressed natural gas used for automotive purposes. The tank has a discoid shape to be easily placed on board of vehicles. The tank comprises a sealed internal core and an external coating made through a twisted coats fiber wrapping of composite material with a very high mechanical tensile resistance. According to some executive variants, the tank internally comprises a reinforcing structure made up of a plurality of elements welded in contact with the internal surface of the core.
Abstract:
The present invention is a tank suitable to contain high pressure fluids, especially for compressed natural gas used for automotive purposes. The tank has a discoid shape to be easily placed on board of vehicles. The tank comprises a sealed internal core and an external coating made through a twisted coats fiber wrapping of composite material with a very high mechanical tensile resistance. According to some executive variants, the tank internally comprises a reinforcing structure made up of a plurality of elements welded in contact with the internal surface of the core.
Abstract:
A method of generating a high-level vacuum comprises evacuating a chamber having a substantially-pure gas therein to a medium-level vacuum, and freezing the residual gas to generate the high-level vacuum within the chamber. Impurities, such as atmospheric air, may be purged from the chamber by evacuating the chamber to a medium level vacuum (e.g., around 10−2 Torr) and subsequently filling the chamber with the gas. This purging process may be repeated multiple times to decrease the level of impurities in the gas filling the chamber. The substantially-pure gas may have an impurity-level of less than approximately 100 PPM and may comprise carbon-dioxide, although the scope of the invention is not limited in this respect. The medium level vacuum may range between approximately 1×10−2 Torr and 5×10−2 Torr allowing the use of a roughing pump, and the high-level vacuum may range between approximately 1×10−5 and 1×10−8 Torr.
Abstract:
A gas storage system formed of a continuous pipe wound in plural layers, each layer having plural loops. The pipe may be distributed within a container, which may serve as a carousel for winding the pipe and as a gas containment device. When containers, each containing a continuous pipe are stacked upon each other, the weight of upper containers may be born by the walls of lower containers, thus preventing lower layers of pipe from suffering stresses due to crushing by upper layers. A method of transporting gas to a gas distribution facility including obtaining a supply of gas at a gas supply point remote from the gas distribution facility, injecting the gas into a continuous pipe bent to form plural layers, each layer including plural loops of pipe, transporting the continuous pipe along with the gas to the gas distribution facility preferably in a ship and discharging the gas at the gas distribution facility. It is preferred that cooling of the pipe during discharging of the gas be conserved so that during subsequent filling the pipe is initially cool. Also, in a further aspect of the invention, during filling, the gas pressure should be maintained as constant as possible for example by controlled release of an incompressible liquid from the pipe as the pipe is filled with gas. Energy from the incompressible liquid may then be recovered or dissipated outside of the pipes.