Abstract:
A pressure tank includes a metallic vessel, a plastic liner received in the metallic vessel, a flexible diaphragm, two connectors and a nozzle coupled to the nipples respectively. The metallic vessel includes upper and lower shells. The upper shell defines a first planar area on a side thereof and a second planar area on a top thereof. The lower shell defines a third planar area therebottom. The flexible diaphragm divides the metallic vessel into a storage space and a pneumatic room. Each of the connectors includes a nipple and an anti-leak assembly. The nipples of the connectors are mounted on the side and top of the upper shell respectively and are in communication with the storage space. The two anti-leak assemblies provide leakproof connection between the nipples and the plastic liner. Additionally, the nozzle is mounted on the third planar area to be in communication with the pneumatic room.
Abstract:
A pressure tank includes a metallic vessel, a plastic liner received in the metallic vessel, a flexible diaphragm, two metallic joints, two anti-leak assemblies and a nozzle coupled to the metallic joints respectively. The metallic vessel includes upper and lower shells. The upper shell defines a first planar area on a side thereof and a second planar area on a top thereof. The lower shell defines a third planar area therebottom. The flexible diaphragm divides said metallic vessel into a storage space and a pneumatic room. The metallic joints are mounted on the side and top of the upper shell respectively and are in communication with the storage space. The two anti-leak assemblies provide leakproof connection between the metallic joints and the plastic liner. Additionally, the nozzle is mounted on the third planar area to be in communication with the pneumatic room.
Abstract:
The operability of a fuel cell which uses a fuel cartridge housing a liquid fuel is improved. A fuel cartridge 1400 houses a liquid fuel 124. The fuel cartridge 1400 includes a gas-liquid separation film 1408 which divides a fuel housing section 1402 into a liquid housing chamber 1402a and a gas housing chamber 1402b. A fuel gas, which is the vaporized liquid fuel, is housed in the gas housing chamber 1402b. A gas exhaust pipe 1410 is connected to the gas housing chamber 1402b, and the fuel gas housed in the gas housing chamber 1402b is discharged to outside the fuel cartridge 1400 via a gas discharge port 1414.
Abstract:
An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.
Abstract:
CNG power system (1) comprising a storage tank (6) connected fluidically to a fuel conversion system (2) via an energy transfer system (4), the fuel conversion system (2) comprising a power unit using CNG as fuel and generating gas emissions comprising CO2, the fuel conversion system comprising a CO2 capture unit (16) configured for separating out CO2 from the gas emissions. The energy transfer system comprises a CNG expansion turbine (22) mounted in a fuel circuit (8) between the storage tank and fuel conversion system powered by expansion of the CNG flowing from the storage tank to the fuel conversion system, and a CO2 compressor (24) connected between the fuel conversion system and the storage tank along a CO2 circuit (10) for compressing the CO2, power for driving the CO2 compressor (24) being supplied in part by power generated by the CNG expansion turbine (22).
Abstract:
A storage tank 10A has a heat insulating material layer 14 formed on the outer side of a partition wall 12 that has a container shape. The inside of the storage tank 10A is divided into two storage spaces V1, V2 The first storage space V1 stores liquefied hydrogen LH2 and the second storage space V2 storing slush hydrogen SH2. A plurality of fins 18 are disposed on the partition plate 16 so as to promote heat transfer between the liquefied hydrogen LH2 and the slush hydrogen SH2 and to reduce the amount of evaporation gas from the liquefied hydrogen LH2. An escape pipe 20 is connected to the storage space V1, and the fuel supply pipes 24a, 24b are connected to the storage spaces V1, V2, respectively. The fuel supply pipes 24a, 24b are connected to a combustor 26 via the main fuel pipe 24.
Abstract:
Methods and systems for tagging carbon dioxide to be stored in a geologic formation are disclosed. In some embodiments, a method includes: providing a carbon dioxide tracer that is quantifiable and distinguishable versus non-anthropogenic produced carbon dioxide; providing carbon dioxide to be stored in the geologic formation; determining what portion of the carbon dioxide is anthropogenic produced carbon dioxide; and mixing a predetermined quantity of the carbon dioxide tracer with the carbon dioxide stored to develop a tagged quantity of carbon dioxide for storage in the geologic formation. In some embodiments, a system for tagging a stream of carbon dioxide includes a tagging module and a mixing module. Tagging module includes a carbon dioxide tracer that is quantifiable and distinguishable versus non-anthropogenic produced carbon dioxide. Mixing module includes mechanisms for containing and injecting the carbon dioxide tracer into a stream of carbon dioxide.
Abstract:
Systems and methods for storing energy in gaseous form in submerged thin-walled tanks are secured to the ocean or lake floor but are open to the water at the tank bottoms and are configured to be filled with gas while submerged.A conduit operatively connected to the tanks provides flow from a surface source of an energy-containing gas to the tank interiors. Surface or subsurface pumping apparatus which may include piston-less pressure cylinders or have leveraged pistons provide a preselected flow rate of the energy-containing gas into the containment structure interior against a back pressure essentially equal to the static pressure of the body of water at the location of the tank to displace an equivalent volume of water through the open bottom. The conduit can be configured to allow heat transfer to vaporize liquefied gas prior to storage. Hydrogen gas can be generated and stored within the tank using Aluminum activated with Galinstan.
Abstract:
A pressure tank includes a metallic vessel, a plastic liner received in the metallic vessel, a flexible diaphragm, two connectors and a nozzle coupled to the nipples respectively. The metallic vessel includes upper and lower shells. The upper shell defines a first planar area on a side thereof and a second planar area on a top thereof. The lower shell defines a third planar area therebottom. The flexible diaphragm divides the metallic vessel into a storage space and a pneumatic room. Each of the connectors includes a nipple and an anti-leak assembly. The nipples of the connectors are mounted on the side and top of the upper shell respectively and are in communication with the storage space. The two anti-leak assemblies provide leakproof connection between the nipples and the plastic liner. Additionally, the nozzle is mounted on the third planar area to be in communication with the pneumatic room.