Abstract:
A mobile heating device operated with liquid fuel is provided, having: a combustion chamber (2) comprising a combustion air inlet (3), wherein the combustion chamber adjacent to the combustion air inlet (3) comprises a widening portion (20) the cross-section of which widens with increasing distance from the combustion air inlet (3) and in which in operation combustion air and fuel are converted in a flaming combustion; a fuel supply which is arranged such that fuel is supplied into the widening portion (20); and an air guide device (6) being adapted to feed combustion air into the widening portion (20) with a flow component directed in the circumferential direction such that an axial recirculation region (RB) forms in the widening portion (20) in which gases flow in the direction towards the combustion air inlet (3) oppositely to a main flow direction (H). The combustion chamber (2) is fluidically sectioned into a primary combustion zone (PZ) and a secondary combustion zone (SZ). The primary combustion zone (PZ) comprises the widening portion (20) and the recirculation region (RB). The secondary combustion zone (SZ) is provided with a secondary combustion air inlet (23) in such a manner that a higher air-fuel ratio λ than in the primary combustion zone (PZ) forms in the secondary combustion zone (SZ).
Abstract:
An improved method and apparatus for supplying combustion air in a roof-fired furnace. Part of the combustion air, overfire air, enters through the roof of a roof-fired furnace at positions separate from the coal burners. The separated entry of overfire air ensures that the initial stages of combustion occur in a fuel-rich environment. A fuel-rich environment during the early stages of combustion favors the formation of molecular nitrogen and disfavors the formation of nitrogen oxides during combustion. The overfire air flows roughly parallel to the flow of combustion products emanating from the coal burners. The overfire air can be angled by vanes either slightly towards or slightly away from the combustion products, depending on how long combustion needs to be retarded in order to inhibit the formation of nitrogen oxides.
Abstract:
A boiler is provided with a radiation heat transfer section in its combustion chamber, which has therein, at least one regenerative-heating burner system including a pair of burners each with a regenerative bed. The burners receive combustion air and exhaust combustion gas which passes through the regenerative beds. Combustion is alternately effected in one of the burners and combustion gas is passed into the other burner, and exhausted through the corresponding regenerative bed of this other burner. Surplus thermal energy which is not completely consumed in the radiation heat transfer section is recovered in the regenerative bed. Combustion air then passes through the heated regenerative bed to heat the air. The boiler temperature is kept flat across the boiler. That is, the temperature is kept almost constant across the combustion chamber. This is done by maintaining a high rate of forced supply of more than 60 m/s for the combustion air. Also, the combustion air is heated to above the ignition point of the fuel, that is, about 800.degree. C. These two factors increases thermal efficiency while reducing NO.sub.x emissions.
Abstract:
A method for reducing acid gas emissions from a carbonaceous fuel burning power plant. An aqueous potassium hydroxide dry scrubber method is used to reduce the formation of nitrogen oxides, sulfur oxides, hydrogen chlorides and hydrogen fluoride from plant flue gases. For those plants utilizing an electrostatic precipitator to remove particulate matter from the flue gas, the performance of this component is also enhanced by the injection of potassium hydroxide upstream of the component. As an added advantage, the final product has beneficial commercial utility as a fertilizer product, rather than having to be disposed in a landfill.
Abstract:
A method for reducing NOx emissions from the combustion of carbonaceous fuels using two sequential stages of partial oxidation followed by a final oxidation stage. In the first stage, substoichiometric air condition of about 0.55 to 0.75 is used in a plug flow fashion, while second stage combustion is performed at a stoichiometric ratio of about 0.80 to 0.99. As the second stage combustion products are cooled by radiant heat transfer to the boiler furnace walls, overfire air is added to produce an stoichiometric ratio of about 1.05 to 1.25 to complete the combustion process. In this manner, the formation of thermal NOx is reduced.
Abstract:
A method and apparatus for recovering sensible heat from a hot exhaust gas having an oxygen concentration of less than 21 vol % in a fuel-air fired combustion device. An oxidant stream comprising a gas having an oxygen concentration of greater than 21 vol % is introduced into the combustion process to form an oxidant mixture comprising the hot exhaust gas, the oxidant and any air present, the mixture having an average combined oxygen concentration of less than 21 vol %.
Abstract:
A boiler has a radiation heat transfer section with opposite sides and boiler water tubes therein for passing boiler water to be heated by combustion gas in the radiation heat transfer section. The boiler water moves substantially in a selected direction in the radiation heat transfer section. A plurality of regenerative-heating-type burner systems are connected to the radiation heat transfer section. Each burner system has a regenerative bed and a burner. The burner systems are in pairs on the opposite sides of the radiation heat transfer section. A first mechanism supplies combustion air through the bed and to the burner of each burner system while a second mechanism supplies fuel to each burner system to form a flame that produces the combustion gas. A third mechanism causes the flow of air and gas to be changed over at intervals. Each pair of burner systems is controlled separately for defining a plurality of temperature zones in the radiation heat transfer section.
Abstract:
A new and improved method and apparatus for altering the firing pattern of an existing furnace of the type including at least one pair of vertically spaced apart burners mounted on a wall of the furnace and supplied with secondary air from a common windbox. The method involves cutting a rectangular panel from the furnace wall around a first burner wherein the burner is located asymmetrically toward a first panel end and spaced farther away from a vertically opposite second end of the panel. The cut-out panel is then reversed in orientation from end to end so that the first burner is then spaced farther apart at a greater distance from a second burner. The panel is reinstalled in the furnace wall in reverse orientation thereby providing a greater spacing or staging distance between the first and second burners producing a reduced level of NO.sub.x when the burners are fired. The increased spacing distance between the burners, the inclusion of new interstage air ports on the panels, and the addition of new burners with unique secondary air swirl orientation results in greatly improved lower NO.sub.X levels in a retrofit of an existing furnace.
Abstract:
A method and apparatus for reducing NOx emissions from the combustion of carbonaceous fuels using three stages of oxidation and second stage in-situ furnace flue gas recirculation. In the first stage, a partial oxidation combustor is used to partially combust the fuel in the presence of heated combustion air. The fuel gas produced in the partial oxidation process is passed to a second stage partial oxidation combustor while molten slag is removed and disposed of. A second preheated combustion air is introduced into the second stage combustor to produce a reducing flue gas and is injected into the furnace in such a way as to create the desired in-situ furnace flue gas recirculation. A third combustion air is mixed with the flue gas in a third stage of combustion to substantially complete the combustion process. Preheated steam may be added to the first or second stages of combustion.
Abstract:
A method for reducing the rate of side wall corrosion in a coal-fired utility boiler (10). A plurality of side wall slots (18) are provided in the side walls (14) of the boiler (10) so that a protective layer of air (22) may be introduced through the slots (18) and propelled upward by the updraft from the burners (16).