Abstract:
A mixed-fuel vacuum burner-reactor (100) includes a primary combustion chamber (110) having a conical interior and a first set of directing blades. The conical interior is connected to an intake manifold (150) on one end and a reduction nozzle (120) on the other end. Injectors (140) are mounted perpendicularly to the reduction nozzle (120) to inject a second fuel into the primary combustion chamber (110). The reduction nozzle (120) is connected to a cylindrical secondary combustion chamber (130) having a second set of directing blades configured to direct air into the secondary combustion chamber (130). Methods of efficiently burning mixed fuels in a triple-vortex vacuum burner-reactor (100) are also disclosed. Vacuum conditions are created and fuels are introduced into the conical primary combustion chamber (110). The fuels are passed over a first set of directing blades to form three vortices before additional fuels are injected in a direction opposite to a direction of rotation of the first set of fuels.
Abstract:
A system and process are provided for converting a hydrocarbon gas to a reformed gas containing hydrogen and carbon monoxide. In accordance with a first embodiment, the system includes a primary combustor, compressor and power turbine. The process is practiced by compressing a feed air in the primary compressor to produce a primary air. The primary air is fed with a primary hydrocarbon gas to the primary combustor, producing a reformed gas that drives the primary power turbine. The primary power turbine is linked to the primary compressor, compressing the feed air in an energy self-sufficient manner. In a second embodiment, the system of the first embodiment further includes a secondary combustor, compressor and power turbine. The process is practiced in the same manner as the first embodiment, producing the reformed gas and driving the primary power turbine and compressor. A portion of the primary air is also fed with a secondary hydrocarbon gas to the secondary combustor, producing an off-gas that drives the secondary power turbine and compressor to compress a gas in an energy self-sufficient manner. In a third embodiment, the system is substantially the same as the second embodiment, but reconfigures the compressors and power turbines and further includes an auxiliary secondary power turbine. The process is practiced in the same manner as the first embodiment, producing the reformed gas and driving the primary power turbine and compressor. The off-gas is produced in the same manner as the second embodiment to drive the secondary power turbine, but the secondary power turbine drives an auxiliary primary compressor, compressing the feed air ahead of the primary compressor in an energy self-sufficient manner. The off-gas further drives the auxiliary secondary power turbine to provide additional power for alternate power users.
Abstract:
In a hybrid furnace system with fluidized bed and coal dust furnace, a fluidized bed furnace is located in lower part of the furnace body, a coal dust furnace is located above the fluidized bed furnace, and the furnace body for combustion of the rising fuel above the fluidized bed and the furnace body of the coal dust furnace are common. The section for the fluidized bed furnace, which contains a coal mill (10) without pneumatic deduster, a duct (12) connected to the coal mill (10) for recycling the exhaust gas, a duct (18 or 19) for coal supply, a coal charger (15) and air supply ducts (9, 16) for fluidization and combustion, is a furnace system independent of the operation of the coal dust furnace, while the section of the plant which serves as coal dust furnace, which contains a coal mill (1) with pneumatic deduster (25), a duct (5) which blows ground coal or coal dust prepared independently by the coal mill (1), at least one coal dust (6) and a duct (7) for the combustion air supply, is a furnace system independent of the operation of the fluidized bed furnace.
Abstract:
Processes and systems for producing glass fibers having regions devoid of glass using submerged combustion melters, including feeding a vitrifiable feed material into a feed inlet of a melting zone of a melter vessel, and heating the vitrifiable material with at least one burner directing combustion products of an oxidant and a first fuel into the melting zone under a level of the molten material in the zone. One or more of the burners is configured to impart heat and turbulence to the molten material, producing a turbulent molten material comprising a plurality of bubbles suspended in the molten material, the bubbles comprising at least some of the combustion products, and optionally other gas species introduced by the burners. The molten material and bubbles are drawn through a bushing fluidly connected to a forehearth to produce a glass fiber comprising a plurality of interior regions substantially devoid of glass.
Abstract:
A system and process are provided for converting a light hydrocarbon gas to a synthetic heavier hydrocarbon liquid. The system includes an autothermal reformer, a Fischer-Tropsch reactor and a Brayton cycle that are structurally and functionally integrated. In the practice of the process, a mixture of a hydrocarbon feed gas, a compressed air feed and process steam is fed to the autothermal reformer to produce a synthesis gas. The synthesis gas is fed to the Fischer-Tropsch reactor where it is catalytically reacted to produce heavy hydrocarbons. The outlet from the Fischer-Tropsch reactor is separated into water, a low heating value tail gas, and the desired hydrocarbon liquid product. The water is pressurized and heated to generate process steam. The tail gas is heated and fed with compressed air and steam to the Brayton cycle having a combustor and a series of power turbines and compressors. The tail gas and air feed are burned in the combustor to produce a combustion gas that is used to drive a power turbine linked by a shaft to an air compressor, thereby driving the air compressor. The system further includes a plurality of heat exchangers that enable heat to be recovered from the outlet of the autothermal reformer. The recovered heat is used to make the process steam as well as to preheat the hydrocarbon feed gas before it is fed to the autothermal reformer, preheat the synthesis gas before it is fed to the Fischer-Tropsch reactor and preheat the tail gas before it is fed to the combustor.
Abstract:
The present invention is related to methods and systems for preventing the release of nitrogen oxides with combustion flue gases emitted to the atmosphere. The invention is specifically directed to the removal of nitric oxide, nitrogen dioxide, and nitrous oxide from flue gas in stationary combustion systems. The methods of the invention improve efficiency of conventional reburning and advanced reburning processes by two key improvements, including the injection of a reducing agent into the reburning zone (16) and the use of promoters, which considerably enhance NOx control. The promoters are metal-containing compounds that can be added to the reducing agents. These improvements allow either one or two stages of reducing agent injection for greater NOx control (50).
Abstract:
The invention relates to a burner, particularly Low-NOX-burner, for generating a flame by combustion of a fuel, comprising: a tile (15, 15a, 15b) surrounding an opening (2, 2a, 2b) of the tile (15, 15a, 15b) extending along a burner axis (12), the tile (15, 15a, 15b) further comprising a front side (20) and a rear side (21) facing away from the front side (20), wherein the rear side (21) comprises an air inlet (10, 10a, 10b) connected to said opening for feeding air (A, A′, A″) into said opening (2, 2a, 2b), and wherein said front side (20) comprises a discharge outlet (9, 9a, 9b) connected to said opening (2, 2a, 2b) for discharging a flame (30) generated by the burner (1) into a surrounding area (S), and wherein the tile (15, 15a, 15b) further comprises an inside (22) facing said opening (2, 2a, 2b) as well as an outside (23) facing away from said opening (2, 2a, 2b). According to the invention the burner (1) further comprises at least one oxygen lance (5) extending along the burner axis (12) in a first recess (17) of said tile (15, 15a, 15b), the at least one oxygen lance (5) having an ejection nozzle (6) at an end region of the at least one oxygen lance (5) for ejecting oxygen (O), particularly such that the oxygen (O) is at first ejected into a colder flue gas region (31) surrounding the relatively hotter flame (30) generated by the burner (1). Further, the invention relates to a method for generating a flame (30).
Abstract:
A burner operating with flameless combustion, comprising a system for sucking the recycling flue gases directly from the combustion chamber by means of an ejector fed with the comburent, a heat exchange system positioned between the recycling flue gases and the comburent, a system for injecting the fuel directly into the recycling flue gases, the latter comprising or not comprising the comburent with formation of a mixture of fuel-recycling flue gases-comburent in the zone around the outlet of the comburent ejector and following introduction of the mixture into the combustion chamber.