Abstract:
An apparatus for stimulating a subterranean formation includes a first tube, a second tube, a combustion body and an ignition propagator. The second tube is positioned within the first tube interior and the second tube interior is sealed from the first tube interior to substantially prevent fluid communication between the first tube interior and the second tube interior. The combustion body is formed from a solid propellant and is positioned within the first tube interior external to the second tube interior. The ignition propagator is positioned within the second tube interior and is substantially free from fluid contact with fluid residing in the surrounding environment external to the first tube wall.
Abstract:
A method for producing a gas and a liquid in a subterranean well includes the step directing a gas flow in a well annulus through one or more baffle plates to separate at least some of the liquid from the gas. The method can also include the steps of directing the separated liquid down the annulus towards a producing formation of the well, dehydrating the gas flow proximate to a surface of the well, and then directing the dehydrated gas flow to the surface. A system for performing the method includes a set of baffle plates located proximate to the producing formation configured to provide a tortuous path for the gas flow through the annulus, and a single baffle plate located proximate to the surface configured to dehydrate the gas flow. In addition to separating the liquid from the gas flow, the set of baffle plates maintains a single phase wet gas above the baffle plates, and a liquid phase below the baffle plates.
Abstract:
A method for transmitting signals through a metal tubular includes the steps of transmitting modulated electromagnetic signals through a non magnetic metal section of the metal tubular, detecting the signals or a field associated with the signals, and controlling or monitoring devices or operations associated with the metal tubular responsive to the signals. A material, geometry, treatment, and alloying of the non magnetic metal section are selected to optimize signal transmission therethrough. A system for performing the method includes the metal tubular and the non magnetic metal section. The system can also include a transmitter device configured to move through the metal tubular emitting the electromagnetic signals, an antenna on the outside of the non magnetic metal section configured to detect the electromagnetic signals, and a receiver-control circuit configured to generate control signals responsive to the electromagnetic signals.
Abstract:
A process for converting organic sulfur compounds contained in liquid hydrocarbons to elemental sulfur. The liquid hydrocarbons are solubilized in an organic solvent and reacted in the presence of a biocatalyst and hydrogen. The organic solvent is a nucleophilic solvent having a pK a greater than about 2, an electrophilic solvent having a pK a more negative than about -2, or mixtures thereof. The biocatalyst may be supported on a Lewis acid. Elemental sulfur is removed from the liquid hydrocarbons. Liquid hydrocarbons treated in accordance with this process have significantly reduced concentrations of organic sulfur compounds and thus reduced viscosity.
Abstract:
A subterranean well system and a process for drilling and completing such a system from a first subterranean well bore (54) which extends to the surface of the earth. A second well bore (55) may be drilled from the first well bore (54) and a first tubular (120) of a multiple well drilling template (100) can be positioned within the first well bore while a second tubular (130) of the template (100) can be positioned within both the first and second well bores (54, 55). Additionally, a third well bore can be drilled from the first well bore (54) and the first tubular can be further positioned therein. The first and second well bores (54, 55) can penetrate subterranean formation(s) or additional well bore(s) can be drilled from the first, second and/or third well bores (54, 55) so as to penetrate subterranean formations. A second multiple well drilling template may be utilized to drill such additional well bore(s) from the second or third well bores (55). Fluid is produced from subterranean formation(s) to the surface via said first, second, third (54, 55) and/or additional well bores (60, 70) and/or through production casing and/or tubing positioned therein.
Abstract:
A process for analyzing geological bedding plane data from a well, and plotting the cumulative dip angle and dip direction of the bedding planes with respect to depth. The cumulative dip angle may also be plotted with respect to sample numbers, which are a function of depth. The process further analyzes the cumulative dip data to produce a series of straight line approximations of various groupings of data. When these straight line approximations intercept, the interception often indicates a fault or unconformity at the location of the interception. The process further analyzes the cumulative dip plot by taking the first derivative of the plotted line. A stepwise shift in the derivative indicates an inflection point in the line, which often indicates a fault or unconformity. The process also plots the dip direction as the color or symbol of each point plotted, and a color or symbol change often indicates a fault or unconformity.
Abstract:
A method and apparatus for running in a tubing string through a high angle or horizontal wellbore without damage to equipment on the tubing string. Centralizers are mounted on the tubing string at spaced intervals on either side of the equipment. The centralizers include spherical rollers which contact the wellbore casing and which are mounted so as to have little or no radially inward movement.
Abstract:
A template and process for drilling and completing multiple wells in a subterranean formation. A template having a plurality of axially extending, divergent bores therethrough is secured to surface or intermdiate casing and a like plurality of subterranean wells are drilled through the bores and into the subterranean formation. Each well is separatly cased to the well head at the surface and separate production tubing is inserted into each well. Thus, remedial operations can be carried out in one well or fluid injected into a subterranean formation via one well while fluid, such as hydrocarbons, are simultaneously produced from a subterranean formation via the other well(s).
Abstract:
The invention relates to a process for converting hydrogen sulfide to sulfur and hydrogen. The hydrogen sulfide gas is contacted with a quinone in an aqueous solvent containing a sulfur complexing agent to yield sulfur and the corresponding hydroquinone. The hydroquinone is converted back to quinone and hydrogen. The quinone is recycled and the hydrogen gas and sulfur is collected. The invention also discloses a range of ratios of complexing agent to quinone which produces an unexpected yield for the disclosed reaction.
Abstract:
A method for identification and quantification of sulfonation by-products by ion chromatography. The method utilizes two eluants and preferably three eluants to identify and quantify the by-products on a single chromatographic run.