Abstract:
This invention materially enhances the quality of the environment and mankind by contributing to the restoration or maintenance of the basic life-sustaining natural elements, by reducing the amount of carbon monoxide introduced to the atmosphere from a combustion system, achieved by furnishing a system's approach to optimize the amount of oxygen to be chemically combined with fuel upon ignition of both allowing the correct amount of carbon to combine with the correct amount of oxygen thus fully release the thermal energy stored therein.
Abstract:
A device and method for charging processing plants, in particular, combustion furnaces (1), is disclosed, in which a flowing process material (3), which has solid components (6) in addition to liquid components (5), is introduced into the processing plant (1), by means of a conveyor line (2) under pressure. According to the invention, advantageous charging conditions may be achieved, by means of mixing the process material (3) before pressurisation.
Abstract:
This invention materially enhances the quality of the environment and mankind by contributing to the restoration or maintenance of the basic life-sustaining natural elements, by reducing the amount of carbon monoxide introduced to the atmosphere from a combustion system, achieved by furnishing a system's approach to optimize the amount of oxygen to be chemically combined with fuel upon ignition of both allowing the correct amount of carbon to combine with the correct amount of oxygen thus fully release the thermal energy stored therein.
Abstract:
This invention materially enhances the quality of the environment and mankind by contributing to the restoration or maintenance of the basic life-sustaining natural elements, by reducing the amount of carbon monoxide introduced to the atmosphere from a combustion system, achieved by furnishing a system's approach to optimize the amount of oxygen to be chemically combined with fuel upon ignition of both allowing the correct amount of carbon to combine with the correct amount of oxygen thus fully release the thermal energy stored therein.
Abstract:
A piston-type fuel pump is provided. The fuel pump includes a housing bounding an internal cavity with a cylindrical tube disposed in the internal cavity. The cylindrical tube provides a bore extending along an axis and a piston is disposed in the bore. A spring is configured to bias the piston in a first direction along the axis. A coil is disposed about the cylindrical tube and a control circuit is disposed in the internal cavity. The control circuit is configured in electrical communication with the coil. The voltage supplied to the control circuit can be varied, with the control circuit compensating for the variable supply voltage to regulate the actuation of the coil from a de-energized state to an energized state. The piston is biased in a second direction opposite the first direction in response to the coil being actuated.
Abstract:
A heater and a method of its use are configured for use at cold operating temperatures. The heater has a supply line for transporting a volume of fuel between a fuel tank and burner. An inline heater is supplied in a supply line for the burner, and preferably is located upstream of a fuel filter for filtering the fuel so as to prevent wax condensation in the filter. The heater also has a return line that normally returns unused fuel from the burner to the heater, hence reducing the volume of fuel that needs to be heated by the heater and reducing system power requirements. The heater may be thermostatically controlled to maintain the temperature of the heated fuel to a value that is at or above a temperature required for good fuel atomization but below a flashpoint of the fuel. A valve is provided in the return line to permit diversion of the returned fuel to the fuel tank during a purge operation at initial startup.
Abstract:
Disclosed is a pneumatically powered high-pressure and lightweight fluid pump. The pump is useful for pumping fuel for liquid rocket engines and for transferring liquids from one space vehicle to another. During operation of the pump, liquid is drained from a tank into a pump chamber and the chamber is then pressurized to deliver fluid. The chamber is then refilled from the main tank. An auxiliary chamber supplies fuel while the main chamber is being filled, thereby a steady stream is delivered from the pump. The auxiliary chamber is refilled from the tank while the main chamber is delivering fluid. In order to transfer fluid from the tank to the pump chamber, the pressure in the pump chamber is maintained at a pressure higher than the vapor pressure of the fluid being pumped but lower than the pressure in the tank.