Abstract:
Spectroscopic system and spectrometers including an optical bandpass filter unit consisting of a plurality of bandpass regions and a spatial encoding unit for encoding discrete frequencies of light passing through the optical filter. The incorporation of the encoding unit allows the spectrometer system to use a detector consisting of one or a small number of elements, rather than using a more expensive detector array as is commonly used with filter-based spectrometers. The system can also include an integrating chamber that collects the light that is not transmitted through the bandpass filter unit and is substantially reflected, and redirects this light to strike the filter unit again, resulting in a significant increase in the optical power passing through the filter. The integrating chamber maximizes the return of the reflected light to the filter assembly and minimizes optical losses. The integrating chamber may be an orthogonal design to preserve the optical geometric characteristics of the light entering the chamber, even after multiple reflections from the optical filter.
Abstract:
Instrument comprising a burner (22) provided with a window (221), on the axis of which is disposed a flame spectrophotometric device consisting of a focusing lens (222, 231), a chopper (223) introducing a number of optical filters (224) at the rate of one per characteristic line in the spectrum of the element under analysis, an optoelectronic cell (232) disposed within the focusing zone of said lens, a demodulation assembly for demodulating the electric signal emitted by said cell, and devices for amplifying and displaying the electric signal emitted by said assembly. Special provisions render the instrument portable and autonomous without detracting from its high precision.
Abstract:
A spectrometer comprises a plurality of isolated optical channels comprising a plurality of isolated optical paths. The isolated optical paths decrease cross-talk among the optical paths and allow the spectrometer to have a decreased length with increased resolution. In many embodiments, the isolated optical paths comprise isolated parallel optical paths that allow the length of the device to be decreased substantially. In many embodiments, each isolated optical path extends from a filter of a filter array, through a lens of a lens array, through a channel of a support array, to a region of a sensor array. Each region of the sensor array comprises a plurality of sensor elements in which a location of the sensor element corresponds to the wavelength of light received based on an angle of light received at the location, the focal length of the lens and the central wavelength of the filter.
Abstract:
A new architecture for implementing a time-resolved Raman spectrometer is 2-3 orders of magnitude faster than current systems. The system additionally is compact, environmentally rugged, low cost and can detect multiple components of a sample simultaneously. In one embodiment, the invention employs a rotating optical switch to time multiplex an input signal through multiple bandpass filters and into a single optical detector which is electrically activated only when the filtered input light pulse is about to impact it. The combination of time-multiplexing the input signal through multiple optical filters and time-sequencing the optical detector enables the device to detect and analyze 2-3 orders of magnitude faster than current designs, processing spectra within milliseconds instead of seconds. The system can process multiple material samples (25+) simultaneously, instead of sequentially, and its mechanical ruggedness and simplicity enables using the system in harsh physical environments when traditional spectrometers can not be used reliably.
Abstract:
A new architecture for implementing a time-resolved Raman spectrometer is 2-3 orders of magnitude faster than current systems. The system additionally is compact, environmentally rugged, low cost and can detect multiple components of a sample simultaneously. In one embodiment, the invention employs a rotating optical switch to time multiplex an input signal through multiple bandpass filters and into a single optical detector which is electrically activated only when the filtered input light pulse is about to impact it. The combination of time-multiplexing the input signal through multiple optical filters and time-sequencing the optical detector enables the device to detect and analyze 2-3 orders of magnitude faster than current designs, processing spectra within milliseconds instead of seconds. The system can process multiple material samples (25+) simultaneously, instead of sequentially, and its mechanical ruggedness and simplicity enables using the system in harsh physical environments when traditional spectrometers can not be used reliably.
Abstract:
The invention relates to determining spectral components (S4, S5) of a response light (S2, S3) originating from a device under test -DUT-, comprising an optical detector (50) and a switchable filter (40), wherein the a switchable filter (40) is optically connected in series with the optical detector (50) and is arranged for receiving the response light 5 (S2, S3) comprising a first spectral component (S4) around a first response wavelength (1) and a second spectral component (S5) around a second response wavelength (2) of the response light (S2, S3), and wherein the switchable filter (40) is adapted for either selecting the first spectral component (S4) or the second spectral component (S5) and transmitting the selected spectral component to the optical detector (50).
Abstract:
A filter assembly includes an incident medium, a spacer, at least one dielectric filter and an exit medium. The spacer is arranged between the incident medium and the at least one dielectric filter such that the incident medium and the at least one dielectric filter are spaced apart by a working distance and thereby enclose a medium of lower index of refraction than the incident medium. The at least one dielectric filter is arranged on the exit medium.
Abstract:
A spectrometer comprises a plurality of isolated optical channels comprising a plurality of isolated optical paths. The isolated optical paths decrease cross-talk among the optical paths and allow the spectrometer to have a decreased length with increased resolution. In many embodiments, the isolated optical paths comprise isolated parallel optical paths that allow the length of the device to be decreased substantially. In many embodiments, each isolated optical path extends from a filter of a filter array, through a lens of a lens array, through a channel of a support array, to a region of a sensor array. Each region of the sensor array comprises a plurality of sensor elements in which a location of the sensor element corresponds to the wavelength of light received based on an angle of light received at the location, the focal length of the lens and the central wavelength of the filter.
Abstract:
Increasing the precision of process monitoring may be improved if the sensors take the form of travelling probes riding along with the flowing materials in the manufacturing process rather than sample only when the process moves passed the sensors fixed location. The probe includes an outer housing hermetically sealed from the flowing materials, and a light source for transmitting light through a window in the housing onto the flowing materials. A spatially variable optical filter (SVF) captures light returning from the flowing materials, and separates the captured light into a spectrum of constituent wavelength signals for transmission to a detector array, which provides a power reading for each constituent wavelength signal.