Abstract:
A method for determining a quality condition of an agricultural product comprises: receiving a received light at a light detector, the received light comprising reflected, scattered, refracted, and/or deflected light from the agricultural product; transmitting the received light to a spectrometer; producing agricultural product (AP) spectral data of the received light using the spectrometer; with a computer in electrical communication with the spectrometer, comparing the AP spectral data to reference spectral data to determine whether the agricultural product has the quality condition, the reference spectral data corresponding to known quality conditions of the agricultural product; and with the computer, generating an output signal corresponding to the quality condition of the agricultural product.
Abstract:
An electronic circuitry of a spectrometer, configured to electrically connect with an optical sensor of the spectrometer, includes a memory unit configured to store a measurement setting, a trigger line configured to transmit at least one trigger signal, and a control unit electrically connected to the trigger line and the memory unit. The control unit is configured to receive the trigger signal from the trigger line so as to instruct the spectrometer to perform a plurality of exposure measurements continuously under the measurement setting, and to save a plurality of spectral data acquired from the exposure measurements into the memory unit. A spectrometer using the electronic circuitry for performing the exposure measurements and a measuring method of the spectrometer are also provided.
Abstract:
A method is provided for the measurement of parameters of a gas present in a gas turbine combustion chamber. The method includes tuning a laser to a range containing the absorption lines of species to be analyzed in the gas, and directing the laser light through the combustion chamber and detecting laser light reflected off boundary walls of the combustion chamber. In order to analyze the absorption spectrum measured at high temperatures and pressures, a signature recognition algorithm is applied to the spectrum. The measured absorption spectrum is cross-correlated with a calibration absorption model spectrum for the absorption lines at several temperatures, pressures, and concentrations generated prior to the measurement. Values for pressure, temperature, and concentrations of selected species in the gas are determined simultaneously allowing direct control of the combustion chamber process. An apparatus for carrying out the method is also provided.
Abstract:
A method and apparatus for identifying an unknown gas by generating an infrared spectrum of the unknown gas using an infrared spectrophotometer that includes a circular variable interference filter, compressing the infrared spectrum of the unknown gas, and comparing the compressed infrared spectrum of the unknown gas to a library of compressed infrared spectra of reference compounds. After comparison, the compressed spectra that most closely match the unknown gas are decompressed and displayed. Because frequency characteristics of circular variable interference filters vary from filter to filter, information designating these frequency characteristics for the particular filter employed are used in generating the infrared spectrum of the unknown gas.
Abstract:
A quantitative analytical method with spectrometric analysis, wherein a sample is irradiated with light, and a plurality of ingredients contained in the sample to be measured are quantitatively determined on the basis of absorptivities at a plurality of appointed wave number points in an absorption spectrum obtained at that time. An assumed concentration-operating matrix is obtained from a combination of reference spectra for a plurality of ingredients, of which the concentrations have been known, and is previously prepared. The concentrations of the respective ingredients to be measured are calculated by the use of the concentration-operating matrix, thereby capable of carrying out a quantitative analysis in a short time with high accuracy.
Abstract:
In a method of identifying or comparing compositions of material, the reflectivity of a material to be identified or compared is measured at index points distributed through the near infrared spectrum. A similar measurement is made for at least one standard or known material. From the reflectivity measurements, sets of values representing the first or higher order derivative curves are determined. These values mathematically define vectors by representing the coordinates of the end points of the vectors and multiple dimensional space. An index of a similarity between the composition of a test sample and a standard material is calculated by determining the cosine of the angle between the corresponding vectors.
Abstract:
A portable analysis spectrometer (10) for field mineral identification is coupled to a microprocessor (11) and memory (12) through a bus (13) and A/D converter (14) to display (16) a spectrum of reflected radiation in a band selected by an adjustable band spectrometer (20) and filter (23). A detector array (21) provides output signals at spaced frequencies within the selected spectrometer band which are simultaneously converted to digital form for display. The spectrum displayed is compared with a collection of spectra for known minerals. That collection is stored in memory and selectively displayed with the measured spectrum, or stored in a separate portfolio. In either case, visual comparison is made. Alternatively, the microprocessor may use an algorithm to make the comparisons in search for the best match of the measured spectrum with one of the stored spectra to identify the mineral in the target area.
Abstract:
Provided are a measurement result display device and a measurement result display method which are capable of making a list of how much difference is present between an allowable value and a measurement value of each measurement item measured by a measuring instrument, in a visually discriminable state. An allowable upper limit value indicator 21 and an allowable lower limit value indicator 22 are disposed at display positions which are set in advance in a measurement result image 20 as positions indicating an allowable upper limit value and an allowable lower limit value, and a measurement value indicator 23 is disposed at a display position calculated from display positions of the allowable upper limit value indicator 21 and allowable lower limit value indicator 22 and a measurement value measured by the measurement unit 10.
Abstract:
There is provided a photoelectric switch capable of reducing a size of a whole device while suppressing light amount irregularity and color irregularity of detected light. The photoelectric switch includes: a surface mount LED, configured to generate a light containing a plurality of color components with different hues; an optical shield disposed between the surface mount LED and a light projecting lens to shield the light around an optical opening passing the light from the surface mount LED to the light projecting lens; a light receiving element configured to selectively receive the light to generate a plurality of light reception signals; a controller configured to control a light projecting amount of the surface mount LED based on the light reception signal.