Abstract:
An electromagnetic sensor for use in a variety of applications requiring extremely high sensitivity, such as measuring power and characteristics of incident electromagnetic radiation includes a superconducting layer that carries an exchange field for providing a spin splitting effect of charge carriers in the superconducting layer, a metal electrode, and an insulating layer arranged between the superconducting layer and metal electrode to form a spin filter junction therebetween. The electromagnetic sensor provides an antenna including a wave collecting element, in contact with the superconducting layer to convey thereinto external electromagnetic waves that are generated by an external source. An electric measurement device provides an output signal responsive to the amplitude and frequency of the external electromagnetic waves, and contacts the metal electrode to measure an electric current or voltage caused by the spin splitted charge carrier flow from the superconducting layer through the spin filter junction into the metal electrode.
Abstract:
A system and method for characterizing incident ions are provided. The method includes positioning a transmission line detector to receive incident ions, the transmission line detector comprising a superconducting meandering wire defining a detection area for incident ions, and applying a bias current to the transmission line detector. The method also includes detecting a first signal produced in the transmission line detector due to an ion impacting the detection area, and detecting a second signal produced in the transmission line detector due to the ion impacting the detection area. The method further includes analyzing the first signal and the second signal to characterize the ion. In some aspects, the method further includes identifying a delay between the first signal and the second signal to determine, using the identified delay, a location of the ion on the detection area.
Abstract:
A bolometer is described. A bolometer includes a superconductor-insulator-semiconductor-superconductor structure or a superconductor-insulator-semiconductor-insulator-superconductor structure. The semiconductor comprises an electron gas in a layer of silicon, germanium or silicon-germanium alloy in which valley degeneracy is at least partially lifted. The insulator or a one or both of the insulators may comprise a layer of dielectric material. The insulator or a one or both of the insulators may comprise a layer of non-degenerately doped semiconductor.
Abstract:
A superconducting nanowire avalanche photodetector (SNAP) with improved high-speed performance. An inductive element may be coupled in series with at least two parallel-coupled nanowires. The nanowires may number 5 or fewer, and may be superconducting and responsive to even a single photon. The series inductor may ensure current diverted from a photon-absorbing nanowire propagates to other nanowires and become amplified. The series inductance may be less than 10 times the nominal inductance per nanowire, and may also be larger than a minimum inductance to avoid spurious outputs in response to a photon absorption. The series inductance may be configured to achieve a desired tradeoff between SNAP reset time and spurious outputs. For example, the series inductance may be configured achieve minimum reset time or maximum bias margin, subject to user-defined constraints. By appropriately configuring the series inductance, a systematic method of designing improved SNAPs may be provided.
Abstract:
Provided is a non-contact type thermometer calibration device, comprising: an oven having a non-contact type thermometer to be calibrated therein to adjust an internal atmosphere temperature; a temperature reference plate mounted in the oven to adjust the temperature; a chiller to provide the temperature reference plate with a coolant; and a calibration processing unit to extract a characteristic curve of a thermoelectric element by radiant heat induced by a difference between the temperature (CT1) of a hot contact plate of the non-contact type thermometer and the temperature (CT3) of the temperature reference plate, wherein the non-contact type thermometer is mounted to face one surface of the temperature reference plate.