Abstract:
Disclosed are a beam scanner and a surface measurement apparatus. The beam scanner includes a spinning mirror having top and bottom reflective surfaces and a plurality of side reflective surfaces between the top and bottom reflective surfaces, and rotating about a rotary shaft penetrating the top and bottom reflective surfaces to scan beams, falling onto the side reflective surface, in one direction, a first light source emitting first beams to the side reflective surface, a second light source emitting second beams to at least one of the top and bottom reflective surfaces, and a detector receiving beams reflected by the spinning mirror, among the second beams. The beam scanner and the surface measurement apparatus can achieve high-speed, high resolution surface measurement since errors caused by the movement of the spinning mirror for beam scanning are minimized.
Abstract:
Disclosed are a beam scanner and a surface measurement apparatus. The beam scanner includes a spinning mirror having top and bottom reflective surfaces and a plurality of side reflective surfaces between the top and bottom reflective surfaces, and rotating about a rotary shaft penetrating the top and bottom reflective surfaces to scan beams, falling onto the side reflective surface, in one direction, a first light source emitting first beams to the side reflective surface, a second light source emitting second beams to at least one of the top and bottom reflective surfaces, and a detector receiving beams reflected by the spinning mirror, among the second beams. The beam scanner and the surface measurement apparatus can achieve high-speed, high resolution surface measurement since errors caused by the movement of the spinning mirror for beam scanning are minimized.
Abstract:
The invention relates to a system comprising a broadband optical light source and a sorting device and more specifically to laser sorting devices. The object of the present invention is to provide a system comprising a sorting device with a light-source offering all wavelengths for the sorting process. This is solved by using an all fiber supercontinuum light source.
Abstract:
In one aspect, an optical sensor is used to detect defects, which can appear on smooth surfaces, is provided. The sensor includes a telecentric laser scanner and a detection unit. The scanner includes a laser for the approximately perpendicular illumination of a smooth surface, a scanning mirror, and a telecentric optical system for guiding illumination and detection beams the detection unit includes an optical detector system, a central diaphragm, which is concentrically positioned in the vicinity of the optical detector system in the direction toward the telecentric laser scanner, a highly sensitive photomultiplier for detecting scattered light, which emanates from defects on smooth surfaces, and a slit diaphragm arranged upstream of the photomultiplier.
Abstract:
In one aspect, an optical sensor is used to detect defects, which can appear on smooth surfaces, is provided. The sensor includes a telecentric laser scanner and a detection unit. The scanner includes a laser for the approximately perpendicular illumination of a smooth surface, a scanning mirror, and a telecentric optical system for guiding illumination and detection beams the detection unit includes an optical detector system, a central diaphragm, which is concentrically positioned in the vicinity of the optical detector system in the direction toward the telecentric laser scanner, a highly sensitive photomultiplier for detecting scattered light, which emanates from defects on smooth surfaces, and a slit diaphragm arranged upstream of the photomultiplier.
Abstract:
A system and method for multimode imaging of at least one sample is disclosed. The system includes at least one light source; an optical system selected responsive to a mode of operation of the imaging system; and a detector capable of selective reading of pixels. The at least one sample is moved relative to the optical system using a sample movement technique selected from the group consisting of step sample moving and continuous sample moving. The method includes the steps of (1) selecting a mode of operation for the imaging system; (2) transmitting light from at least one light source through an optical system selected in response to the mode of operation for the imaging system; (3) moving the at least one sample relative to the optical system using a sample movement technique selected from the group consisting of step sample moving and continuous sample moving; and (4) selectively reading pixels with a detector.
Abstract:
Methods and devices are disclosed which apply an excitation-emission matrix (EEM) to a heterogeneous, two-dimensional sample, allowing a considerably larger number of emitting, e.g. fluorescent, labels to be used simultaneously. This may be accomplished by employing a spectroscopic method of excitation-emission matrices which allows discrimination of species with similar emission spectra, and also allows positive identification of energy transfer between emitting species. The methods and devices may employ a novel excitation-light scanning technique which allows imaging of the emission from the heterogeneous sample both in two spatial dimensions (length and width) and in two spectral dimensions (excitation and emission wavelength). This light scanning technique maximizes the throughput of excitation light, increasing the sensitivity and hence the reading speed of the instrument.
Abstract:
A system and method for multimode imaging of at least one sample is disclosed. The system includes at least one light source; an optical system selected responsive to a mode of operation of the imaging system; and a detector capable of selective reading of pixels. The at least one sample is moved relative to the optical system using a sample movement technique selected from the group consisting of step sample moving and continuous sample moving. The method includes the steps of (1) selecting a mode of operation for the imaging system; (2) transmitting light from at least one light source through an optical system selected in response to the mode of operation for the imaging system; (3) moving the at least one sample relative to the optical system using a sample movement technique selected from the group consisting of step sample moving and continuous sample moving; and (4) selectively reading pixels with a detector.
Abstract:
The invention relates to a system comprising a broadband optical light source and a sorting device and more specifically to laser sorting devices. The object of the present invention is to provide a system comprising a sorting device with a light-source offering all wavelengths for the sorting process. This is solved by using an all fiber supercontinuum light source.