Abstract:
A method of calibration transfer for a testing instrument includes: collecting a first sample; generating a standard response of a first instrument based, at least in part, on the first sample; and performing instrument standardization of a second instrument based, at least in part, on the standard response of the first instrument. Data corresponding to a second sample is then obtained using the second instrument and a component of the second sample is identified based, at least in part, on a calibration model.
Abstract:
A method for analyzing biological specimens by spectral imaging to provide a medical diagnosis includes obtaining spectral and visual images of biological specimens and registering the images to detect cell abnormalities, pre-cancerous cells, and cancerous cells. This method eliminates the bias and unreliability of diagnoses that is inherent in standard histopathological and other spectral methods. In addition, a method for correcting confounding spectral contributions that are frequently observed in microscopically acquired infrared spectra of cells and tissue includes performing a phase correction on the spectral data. This phase correction method may be used to correct various types of absorption spectra that are contaminated by reflective components.
Abstract:
A method, a system and a computer program are disclosed for recognizing of at least one wood species. In particularity, the method acquires an image of the at least one wood species for analyzing the image using an image acquisition module (IAM) (220). In addition, the method processes the image for enhancing quality of the acquired image using a pre processing module (PPM) (230). Additionally, the method extracts a plurality of features of the processed image for classifying at least one pattern using a feature extraction module (FEM) (240). Further, the method classifies the at least one pattern for the recognizing the at least one wood species using a pattern classification module (PCM) (250).
Abstract:
Die Erfindung betrifft ein Trainingsverfahren für einen adaptiven Auswertealgorithmus, insbesondere für ein künstliches neuronales Netzwerk, zur Bestimmung von Stoffkonzentrationen (20) in mindestens einer Pflanze (25) anhand von hyperspektralen Bilddaten (17) der mindestens einen Pflanze (25), wobei Parameter des adaptiven Auswertealgorithmus anhand einer Vielzahl von Trainingsfällen (23) kalibriert werden, wobei jeder dieser Trainingsfälle (23) gegeben ist durch einen Eingangsvektor (11), der Bilddaten (17) eines hyperspektralen Bildes (1) einer zu dem Trainingsfall (23) gehörigen Testpflanze (2) beinhaltet, und einen Ausgangsvektor (21), der durch mittels einer chemischen Analyse (19) bestimmten Stoffkonzentrationen (20) innerhalb dieser zu dem Trainingsfall (23) gehörigen Testpflanze (2) gegeben ist, wobei jeder einzelne der Trainingsfälle (23) erzeugt wird, indem zunächst die zu dem Trainingsfall gehörige Testpflanze (23) in einen vorbestimmten physiologische Zustand geführt wird. Die Erfindung betrifft ferner ein hyperspektrales Messgerät (24) mit einer Auswerteeinheit (18) und eine Vorrichtung (27, 31, 36) zum Ausbringen eines Betriebsmittels umfassend ein derartiges Messgerät.
Abstract:
A particle image in a sample 63 is formed at an imaging position 56 by an objective lens 55 of a microscope, projected on the image picking up plane of a TV camera 58 via projection lens 57 and is subjected to photo-electric conversion. Image signals from the TV camera 58 are supplied to an image memory 75 via an A/D converter 74 as well as to an image processing control unit 76. Image signals outputted from the image memory 75 are supplied to a characteristic picking out unit 78 and there a plurality of characteristics of the particle concerned are picked out. The picked-out characterstics are supplied to the classification unit 79 and there classification of the sediment components is performed via a neural network with a learning capability. Accordingly, the classification unit 79 performs provisionally an automatic classification of the objective sediment components by making use of the inputted characteristic parameters. Whereby the device which allows accurate and fast automatic component particle analysis even for patient specimens containing a variety of components in high concentration is realized.
Abstract:
구조의 비대칭성을 결정하는 방법에 대해 설명한다. 이 방법은 격자 구조에 대해, 광학 산란측정법으로 얻어진 제1 신호와, 이것과 상이한 제2 신호를 측정하는 단계를 포함한다. 그리고, 제1 신호와 제2 신호 간의 차분이 결정된다. 제1 신호, 제2 신호, 및 차분을 이용한 연산에 기초하여 격자 구조의 비대칭 구조 파라미터가 결정된다.