Abstract:
A method of processing digital samples of a signal received at a receiver of a wireless communication system includes monitoring channel conditions and generating a channel indicator including at least one channel parameter by performing at least one of: estimating a channel mobility parameter and comparing it with a threshold; estimating a channel parameter of the energy of the channel outside a predefined temporal window and comparing it with a threshold; estimating a channel temporal duration parameter and establishing if it meets predetermined criteria; estimating a channel-zero location parameter and establishing if it meets predetermined criteria; estimating a received-signal signal-to-disturbance power ratio and comparing it to a threshold; estimating an estimated-channel-response signal-to-disturbance power ratio; estimating the degree of non-stationarity of the disturbance at the receiver input; and selecting one of a plurality of processing routines for processing the digital samples based on said channel indicator. Related receivers are also described.
Abstract:
A sequence allocating method and apparatus wherein in a system where a plurality of different Zadoff-Chu sequences or GCL sequences are allocated to a single cell, the arithmetic amount and circuit scale of a correlating circuit at a receiving end can be reduced. In ST201, a counter (a) and a number (p) of current sequence allocations are initialized, and in ST202, it is determined whether the number (p) of current sequence allocations is coincident with a number (K) of allocations to one cell. In ST203, it is determined whether the number (K) of allocations to the one cell is odd or even. If K is even, in ST204-ST206, sequence numbers (r=a and r=N−a), which are not currently allocated, are combined and then allocated. If K is odd, in ST207-ST212, for sequences that cannot be paired, one of sequence numbers (r=a and r=N−a), which are not currently allocated, is allocated.
Abstract:
A sequence allocating method and apparatus wherein in a system where a plurality of different Zadoff-Chu sequences or GCL sequences are allocated to a single cell, the arithmetic amount and circuit scale of a correlating circuit at a receiving end can be reduced. In ST201, a counter (a) and a number (p) of current sequence allocations are initialized, and in ST202, it is determined whether the number (p) of current sequence allocations is coincident with a number (K) of allocations to one cell. In ST203, it is determined whether the number (K) of allocations to the one cell is odd or even. If K is even, in ST204-ST206, sequence numbers (r=a and r=N−a), which are not currently allocated, are combined and then allocated. If K is odd, in ST207-ST212, for sequences that cannot be paired, one of sequence numbers (r=a and r=N−a), which are not currently allocated, is allocated.
Abstract:
A sequence allocating method and a sequence allocating apparatus wherein in a system where a plurality of different Zadoff-Chu sequences or GCL sequences are allocated to a single cell, the arithmetic amount and circuit scale of a correlating circuit at a receiving end can be reduced. According to these method and apparatus, in ST201, a counter (a) and a number (p) of current sequence allocations are initialized, and in ST202, it is determined whether the number (p) of current sequence allocations is coincident with a number (K) of allocations to one cell. In ST203, it is determined whether the number (K) of allocations to the one cell is odd or even. If K is even, in ST204-ST206, sequence numbers (r=a and r=N−a), which are not currently allocated, are combined and then allocated. If K is odd, in ST207-ST212, for sequences that cannot be paired, one of sequence numbers (r=a and r=N−a), which are not currently allocated, is allocated.
Abstract:
A sequence allocating method and apparatus wherein in a system where a plurality of different Zadoff-Chu sequences or GCL sequences are allocated to a single cell, the arithmetic amount and circuit scale of a correlating circuit at a receiving end can be reduced. In ST201, a counter (a) and a number (p) of current sequence allocations are initialized, and in ST202, it is determined whether the number (p) of current sequence allocations is coincident with a number (K) of allocations to one cell. In ST203, it is determined whether the number (K) of allocations to the one cell is odd or even. If K is even, in ST204-ST206, sequence numbers (r=a and r=N−a), which are not currently allocated, are combined and then allocated. If K is odd, in ST207-ST212, for sequences that cannot be paired, one of sequence numbers (r=a and r=N−a), which are not currently allocated, is allocated.
Abstract:
A sequence allocating method and apparatus wherein in a system where a plurality of different Zadoff-Chu sequences or GCL sequences are allocated to a single cell, the arithmetic amount and circuit scale of a correlating circuit at a receiving end can be reduced. In ST201, a counter (a) and a number (p) of current sequence allocations are initialized, and in ST202, it is determined whether the number (p) of current sequence allocations is coincident with a number (K) of allocations to one cell. In ST203, it is determined whether the number (K) of allocations to the one cell is odd or even. If K is even, in ST204-ST206, sequence numbers (r=a and r=N−a), which are not currently allocated, are combined and then allocated. If K is odd, in ST207-ST212, for sequences that cannot be paired, one of sequence numbers (r=a and r=N−a), which are not currently allocated, is allocated.
Abstract:
A sequence allocating method and apparatus wherein in a system where a plurality of different Zadoff-Chu sequences or GCL sequences are allocated to a single cell, the arithmetic amount and circuit scale of a correlating circuit at a receiving end can be reduced. In ST201, a counter (a) and a number (p) of current sequence allocations are initialized, and in ST202, it is determined whether the number (p) of current sequence allocations is coincident with a number (K) of allocations to one cell. In ST203, it is determined whether the number (K) of allocations to the one cell is odd or even. If K is even, in ST204-ST206, sequence numbers (r=a and r=N−a), which are not currently allocated, are combined and then allocated. If K is odd, in ST207-ST212, for sequences that cannot be paired, one of sequence numbers (r=a and r=N−a), which are not currently allocated, is allocated.
Abstract:
A method for decoding a data symbol carried by a signal received by a receiver of a communication system, the data symbol being modulated by a spread code sequence selected from a plurality of spread code sequences being quasi-orthogonal to each other to differentiate the symbol from other data symbols, and being received as a set of modulation bits, the method including a step of correlating the modulated data symbol received with each of the plurality of spread code sequences, and the correlating step is preceded by a step of sub-sampling the modulated data symbol received to mask one or more of the modulation bits therein, such that the step of correlating the sub-sampled data symbol received is carried out only for the non-masked modulation bits. It extends to a demodulation unit configured for the implementation of this method, and to a receiver integrating such a unit.
Abstract:
A sequence allocating method and apparatus wherein in a system where a plurality of different Zadoff-Chu sequences or GCL sequences are allocated to a single cell, the arithmetic amount and circuit scale of a correlating circuit at a receiving end can be reduced. In ST201, a counter (a) and a number (p) of current sequence allocations are initialized, and in ST202, it is determined whether the number (p) of current sequence allocations is coincident with a number (K) of allocations to one cell. In ST203, it is determined whether the number (K) of allocations to the one cell is odd or even. If K is even, in ST204-ST206, sequence numbers (r=a and r=N−a), which are not currently allocated, are combined and then allocated. If K is odd, in ST207-ST212, for sequences that cannot be paired, one of sequence numbers (r=a and r=N−a), which are not currently allocated, is allocated.
Abstract:
Multistage Wiener filters (MWF) represent a component of the MWF as an un-normalized vector of filter coefficients within a finite impulse response (FIR) filter in a manner that avoids reliance on the 2-norm operation of the un-normalized vector of coefficients. The 2-norm operation can be replaced by less expensive operations performed elsewhere in the MWF. Preferably the filter adds only a few additional addition, subtraction and multiplication operations to compensate for the elimination of the square root and the division operations used for the 2-norm operation. As a result, it is possible to eliminate all or nearly all of the square rod and arithmetic division operations of at least some implementations of the MWF.