Abstract:
A mobile terminal disclosed herein includes a main body having front and side surfaces, a window provided on a top of the main body and curved from the front surface toward the side surfaces to define at least a part of the side surfaces, a touch sensor provided on a rear surface of the window and curved along a shape of the window, a frame provided on a rear surface of the display and having a shape corresponding to the display for support, supporting members supporting ends of the window, the touch sensor and the display and partially defining the side surfaces of the terminal, and a rear case covering a rear surface of the main body, wherein the touch sensor and display are formed longer along side surfaces of the window, and the window contacts parts of the supporting members, externally exposed to define the side surfaces of the terminal.
Abstract:
A mobile terminal disclosed herein includes a main body having front and side surfaces, a window provided on a top of the main body and curved from the front surface toward the side surfaces to define at least a part of the side surfaces, a touch sensor provided on a rear surface of the window and curved along a shape of the window, a frame provided on a rear surface of the display and having a shape corresponding to the display for support, supporting members supporting ends of the window, the touch sensor and the display and partially defining the side surfaces of the terminal, and a rear case covering a rear surface of the main body, wherein the touch sensor and display are formed longer along side surfaces of the window, and the window contacts parts of the supporting members, externally exposed to define the side surfaces of the terminal.
Abstract:
A mobile terminal disclosed herein includes a main body having front and side surfaces, a window provided on a top of the main body and curved from the front surface toward the side surfaces to define at least a part of the side surfaces, a touch sensor provided on a rear surface of the window and curved along a shape of the window, a frame provided on a rear surface of the display and having a shape corresponding to the display for support, supporting members supporting ends of the window, the touch sensor and the display and partially defining the side surfaces of the terminal, and a rear case covering a rear surface of the main body, wherein the touch sensor and display are formed longer along side surfaces of the window, and the window contacts parts of the supporting members, externally exposed to define the side surfaces of the terminal.
Abstract:
A mobile terminal disclosed herein includes a main body having front and side surfaces, a window provided on a top of the main body and curved from the front surface toward the side surfaces to define at least a part of the side surfaces, a touch sensor provided on a rear surface of the window and curved along a shape of the window, a frame provided on a rear surface of the display and having a shape corresponding to the display for support, supporting members supporting ends of the window, the touch sensor and the display and partially defining the side surfaces of the terminal, and a rear case covering a rear surface of the main body, wherein the touch sensor and display are formed longer along side surfaces of the window, and the window contacts parts of the supporting members, externally exposed to define the side surfaces of the terminal.
Abstract:
A mobile terminal disclosed herein includes a main body having front and side surfaces, a window provided on a top of the main body and curved from the front surface toward the side surfaces to define at least a part of the side surfaces, a touch sensor provided on a rear surface of the window and curved along a shape of the window, a frame provided on a rear surface of the display and having a shape corresponding to the display for support, supporting members supporting ends of the window, the touch sensor and the display and partially defining the side surfaces of the terminal, and a rear case covering a rear surface of the main body, wherein the touch sensor and display are formed longer along side surfaces of the window, and the window contacts parts of the supporting members, externally exposed to define the side surfaces of the terminal.
Abstract:
An overvoltage protector bridge circuit for protecting telecommunications equipment against voltage surges on transmission lines utilizes an overvoltage protection device in a bridge circuit having multiple diodes arranged in series or in parallel on each leg of the circuit. The overvoltage protection device conducts when it reaches a threshold voltage potential. The overvoltage protection device is electrically connected between a pair of connection nodes in the bridge circuit. The bridge circuit is made up of multiple diodes arranged along each of the legs of the circuit, which extend between the tip line and the ring line and the connection nodes. At least two diodes are arranged in series or in parallel along each leg of the bridge circuit to steer the excess voltage on the tip line or the ring line, or both, through the overvoltage protection device to ground. The use of multiple diodes on each leg of the bridge circuit reduces the effective off-state capacitance of the overvoltage protection device, thereby permitting the bridge circuit to be utilized for high frequency transmission line applications, and increases the overall surge current handling capability of the bridge circuit.
Abstract:
A mobile terminal and a method for controlling the same are provided to prevent the breakage of a connector and save the time required in combining an external device to the connector with in a dark place by installing light-emitting elements, which emit light through interworking with a connector protection cover, around the connector. A mobile terminal comprises a cover(4), a switch part(30), a lighting driving part(40), and a control part(60). The cover(4) protects a connector which is combined with an external device. The switch part(30) is switched on when the cover(4) is opened. The lighting driving part(40), located around the connector and supplied driving power by the switching operation of the switch part(30), activates light-emitting elements(5a,5b). Based on an operation setting for the light-emitting elements(5a,5b), the control part(60) controls the switch part(30) and the lighting driving part(40) and intercepts the driving power supplied to the light-emitting elements(5a,5b).
Abstract:
A mobile terminal disclosed herein includes a main body having front and side surfaces, a window provided on a top of the main body and curved from the front surface toward the side surfaces to define at least a part of the side surfaces, a touch sensor provided on a rear surface of the window and curved along a shape of the window, a frame provided on a rear surface of the display and having a shape corresponding to the display for support, supporting members supporting ends of the window, the touch sensor and the display and partially defining the side surfaces of the terminal, and a rear case covering a rear surface of the main body, wherein the touch sensor and display are formed longer along side surfaces of the window, and the window contacts parts of the supporting members, externally exposed to define the side surfaces of the terminal.
Abstract:
Various embodiments provide a handheld computing device, such as a cellular phone, that includes a fingerprint sensor embedded in the device's display active area. The fingerprint sensor is composed of a series of PIN diodes that are configured to operate in a photo-receiving mode. In various embodiments, the PIN diodes are formed as active matrix organic light emitting diodes (AMOLEDs) at least partially within the gap between pixels in the display active area.
Abstract:
A mobile terminal disclosed herein includes a main body having front and side surfaces, a window provided on a top of the main body and curved from the front surface toward the side surfaces to define at least a part of the side surfaces, a touch sensor provided on a rear surface of the window and curved along a shape of the window, a frame provided on a rear surface of the display and having a shape corresponding to the display for support, supporting members supporting ends of the window, the touch sensor and the display and partially defining the side surfaces of the terminal, and a rear case covering a rear surface of the main body, wherein the touch sensor and display are formed longer along side surfaces of the window, and the window contacts parts of the supporting members, externally exposed to define the side surfaces of the terminal.