Abstract:
A polyolefin composition comprising: A) from 85.0 wt % to 99.5 wt %; A terpolymer containing propylene, ethylene and 1-hexene wherein: (i) the content of 1-hexene derived units ranges from 1.0 wt % to 5.0%; (ii) the content of ethylene derived units is comprised between 0.5 wt % and 10.0 wt % (iii) the melting temperature ranges from 130° C. to 145° C.; B) from 0.5 wt % to 10.0 wt %; of a propylene, ethylene copolymer composition comprising: b1) from 12 wt % to 52 wt %; of a propylene homopolymer or a propylene/ethylene copolymer having a content of ethylene derived units ranging from 0.1 wt % to 4.5 wt %; and having a xylene soluble content measured at 25° C. lower than 10 wt %; b2) from 48 wt % to 88 wt % of a propylene ethylene copolymer having a content of ethylene derived units ranging from 15.0 wt % to wt % to 42.0 wt %; wherein the resulting polyolefin composition has an melt flow rate (230° C./5 kg. ISO 1133) ranging from 0.2 g/10 min to 4.0 g/10 min; the sum A+B being 100 and the sum b1+b2 being 100.
Abstract:
Catalyst component for the polymerization of olefins comprising Mg, Ti and an electron donor compound of the following formula (I) In which R1 groups are selected from C1-C15 hydrocarbon groups, R8 groups, equal or different to each other, are selected from hydrogen, halogen and C1-C15 hydrocarbon groups, optionally containing an heteroatom selected from halogen, O, P, S, N and Si and L is a divalent hydrocarbon group optionally containing heteroatoms selected from halogen, O, P, S, N and Si.
Abstract:
The present disclosure relates to a process for the preparation of a porous propylene carried out in the presence of a catalyst system comprising (a) a Ziegler-Natta catalyst containing at least two electron donor compounds, one of which is present in an amount from 50 to 90% by mol with respect to the total amount of donors and selected from succinates, and the other being selected from 1,3 diethers, (b) an aluminum alkyl and comprising the following steps: i) contacting the catalyst components (a) and (b) for a period of time ranging from 1 to 60 minutes, at a temperature ranging from 35 to 55° C.; optionally, ii) pre-polymerizing with one or more olefins of formula CH2═CHR, where R is H or a C1-C10 hydrocarbon group, up to forming amounts of polymer from about 0.1 up to about 1000 g per gram of solid catalyst component (a); and iii) polymerizing propylene in the optional presence of minor amounts of ethylene and/or C4-C10 alpha olefins for producing the porous propylene (co)polymer.
Abstract:
The present disclosure relates to highly filled polyolefin compositions with improved balance of properties particularly for applications where puncture and tear resistance is requested comprising a flexible heterophasic polyolefin composition (I), consisting of a crystalline polymer fraction (A) consisting of a copolymer of propylene with ethylene having a fraction insoluble in xylene at 25° C. of at least 90% by weight, and an elastomeric fraction (B) consisting of a copolymer or blend of copolymers of ethylene with propylene; the copolymer or blend containing units derived from ethylene in a quantity lower than 40% by weight. The fraction soluble in xylene at 25° C. of the polyolefin composition having an IVgpc lower than 2.5 dl/g, a broad molecular weight distribution Mw/Mn (GPC) equal to or higher than 4, and a Mz/Mw (GPC) equal to or higher than 2.5. The filled polyolefin composition further comprises inorganic filler (II) and a butene-1 copolymer having: a flexural modulus (ISO 178) lower than 60 MPa, a Shore A (ISO 868) lower than 90 and a Tg (DMTA) lower than −20° C.
Abstract:
The present disclosure relates to a composition comprising: (A) 30-60% by weight of a soft polyolefin composition comprising 10-50% by weight of a copolymer (a) of propylene, which contains from 1-8% by weight of comonomer; 50-90% by weight of a copolymer (b) of ethylene and other alpha-olefin(s) and from 57-80% of ethylene; where the weight ratio of the content of copolymer component (b) to the fraction XS (soluble in xylene) at room temperature (about 25° C.), both (b and XS) referred to the total weight of (a)+(b), is 1.5 or less, and the intrinsic viscosity [η] of the XS fraction is 3 dl/g or more; and the total quantity of copolymerized ethylene is 30-65% by weight; (B) 5-30% of glass fiber filler; (C) 0.5%-3% by weight of a compatibilizer; and (D) 10-40% by weight of a polypropylene component selected from propylene homopolymers, propylene copolymers containing up to 5% by moles of ethylene and/or C4-C10 α-olefin(s) and combinations of such homopolymers and copolymers, with a MFR from 0.3 to 2500 g/10 min.
Abstract:
Catalyst component for the polymerization of olefins comprising Mg, Ti and an electron donor compound of the following formula (I) in which R2-R8 groups, equal or different to each other, are selected from hydrogen, halogen and C1-C15 hydrocarbon groups, optionally containing an heteroatom selected from halogen, O, P, S, N, and Si and R9 groups are selected from C1-C15 hydrocarbon groups optionally containing an heteroatom selected from halogen, O, P, S, N, and Si.
Abstract:
The present technology relates to a solid catalyst component for the polymerization of olefins comprising Mg, Ti and an electron donor of the general formula (I): where R1 is selected from C1-C15 hydrocarbon groups, the R2 groups are equal to or different from each other, are hydrogen, or the R1 groups can be fused together to form one or more cycles and A is a bivalent bridging group. The catalyst components of the present disclosure exhibit high activity and stereospecificity in the polymerization of olefins.
Abstract:
Propylene terpolymers are prepared by polymerizing propylene, ethylene and an alpha-olefin selected from the group of C4-C8 alpha-olefins in the presence of a catalyst system obtained by contacting a solid catalyst component comprising a magnesium halide, a titanium compound having at least a Ti-halogen bond and at least two electron donor compounds one of which being present in an amount from 40 to 90% by mol with respect to the total amount of donors and selected from succinates and the other selected from 1,3 diethers, an aluminum hydrocarbyl compound, and optionally an external electron donor compound.
Abstract:
A process for the preparation of ethylene polymers comprising polymerizing ethylene, optionally with one or more α-olefin comonomers, in the presence of:(i) a solid catalyst component comprising titanium, magnesium, halogen and optionally an internal electron-donor compound, (ii) an aluminum alkyl compound, and (iii) an antistatic compound selected among the hydroxyesters with at least two free hydroxyl groups, wherein the weight ratio of aluminum alkyl compound to solid catalyst component is higher than 0.80 and the weight ratio of antistatic compound to aluminum alkyl compound is higher than 0.10.
Abstract:
Solid adducts comprising MgCl2, ethanol and water characterized in that the amount of ethanol ranges from 50% to less than 57% by weight, the amount of water is ranges from 0.5 to 5% by weight, the ethanol/water weight ratio is lower than 60 and the porosity determined with Hg method due to pores with radius up to 1 μm and expressed in cm3/g, is lower than 0.2.