Abstract:
A photoelectric conversion device includes: a first optical filter that has a first pattern periodically having a plurality of structures and is formed of a conductive material film disposed on a first photoelectric conversion element with an insulating film therebetween; and a first optical filter that has a second pattern periodically having a plurality of structures and is formed of a conductive material film disposed on a second photoelectric conversion element with the insulating film therebetween. The interval between the first pattern and the second pattern that are adjacent to each other is longer than a period of the structures in the first pattern and a period of the structures in the second pattern.
Abstract:
A spectrometer comprises a plurality of isolated optical channels comprising a plurality of isolated optical paths. The isolated optical paths decrease cross-talk among the optical paths and allow the spectrometer to have a decreased length with increased resolution. In many embodiments, the isolated optical paths comprise isolated parallel optical paths that allow the length of the device to be decreased substantially. In many embodiments, each isolated optical path extends from a filter of a filter array, through a lens of a lens array, through a channel of a support array, to a region of a sensor array. Each region of the sensor array comprises a plurality of sensor elements in which a location of the sensor element corresponds to the wavelength of light received based on an angle of light received at the location, the focal length of the lens and the central wavelength of the filter.
Abstract:
A spectroscopic sensor that applies lights in a wavelength band containing plural wavelengths to an object and spectroscopically separates reflected lights or transmitted lights from the object using plural light band pass filters that transmit the respective specific wavelengths and plural photosensor parts to which corresponding transmitted lights are input based on output results of independent photosensors. The spectroscopic sensor may be integrated in a semiconductor device or module by integration using a semiconductor process and downsizing may be realized.
Abstract:
The present disclosure relates to a self-aligned spectrometer according to claim 1, comprising: a fixing device composed of light-transmittable materials, and which includes an air lens placed within the fixing device, and an optical waveguide of which at least a partial part is inserted and fixed in place within the fixing device through the first face of the fixing device.
Abstract:
A spectrometer chip for analyzing a fluid sample and a method of manufacturing the spectrometer chip are provided. The spectrometer chip includes a cell comprising a chamber in which the fluid sample is accommodated, and a spectrometer comprising a channel of silicon nitride, the channel being configured to resonate and transmit light that is emitted from the fluid sample, and the spectrometer being disposed on a surface of the cell. The spectrometer chip further includes a detector configured to detect the transmitted light.
Abstract:
A miniature spectrometer comprises an input port, an image capture unit, a miniature diffraction optical grating, an optical grating accommodation slot, a cushion, and an affixing plate. The miniature spectrometer may further comprise a waveguide device, and the optical grating accommodation slot is positioned in a space defined by an opening of the waveguide device. The input port receives an optical signal which proceeds in the waveguide device. The miniature diffraction optical grating separates the optical signal into numerous spectral components to be projected onto the image capture unit. The cushion is stacked on the miniature diffraction optical grating, with both disposed in the optical grating accommodation slot. The affixing plate is disposed on the waveguide device to apply a compressing force on the cushion to affix the miniature diffraction optical grating in the optical grating accommodation slot.
Abstract:
A spectrometer comprising a waveguide module, a diffractive component, and a light sensor is provided. The waveguide module has a first reflective surface, a second reflective surface opposite to the first reflective surface, and a light channel between the first reflective surface and the second reflective surface. The diffractive component has a diffractive surface and a plurality of strip-shaped diffractive structures located on the diffractive surface. The sharpness of the profile of the strip-shaped diffractive structures on a first side of the diffractive surface is greater than that on a second side of the diffractive surface. When viewed along a direction perpendicular to the second reflective surface, the first side of the diffractive surface is positioned between the first reflective surface and the second reflective surface with a distance away from the second reflective surface. A method for assembling the spectrometer and an assembling system are also provided.
Abstract:
An optical spectroscopy device includes a first cladding layer is positioned over a photodetector. An optical core region is over the first cladding layer where the optical core region is configured to receive a light beam. The optical core region includes a first grating having a first pitch where the first pitch is positioned to direct a first wavelength of the light beam to a first portion of the photodetector. The optical core region further includes a second grating having a second pitch where the second grating is positioned to direct a second wavelength of the light beam to a second portion of the photodetector. The first pitch is different from the second pitch, the first wavelength is different from the second wavelength, and the first portion of the photodetector is different from the second portion of the photodetector. Additionally, a second cladding layer is over the optical core region.
Abstract:
Apparatuses and systems for analyzing light by mode interference are provided. An example of an apparatus for analyzing light by mode interference includes a number of waveguides to support in a multimode region two modes of the light of a particular polarization and a plurality of scattering objects offset from a center of at least one of the number of waveguides.
Abstract:
In a spectroscopic module 1, a flange 7 is formed integrally with a diffraction layer 6 along a periphery thereof so as to become thicker than the diffraction layer 6. As a consequence, at the time of releasing a master mold used for forming the diffraction layer 6 and flange 7, the diffraction layer 6 formed along a convex curved surface 3a of a main unit 3 can be prevented from peeling off from the curved surface 3a together with the master mold. A diffraction grating pattern 9 is formed so as to be eccentric with respect to the center of the diffraction layer 6 toward a predetermined side. Therefore, releasing the mold earlier from the opposite side of the diffraction layer 6 than the predetermined side thereof can prevent the diffraction layer 6 from peeling off and the diffraction grating pattern 9 from being damaged.