Abstract:
The present invention relates to a process for making a hydrophilic polyamide without excessive foaming by delaying the introduction of the hydrophilic monomer. The hydrophilic monomer may be added to the polymerization process after at least a portion of the water has been removed from the process.
Abstract:
This document describes biochemical pathways for producing glutaric acid, 5-aminopentanoic acid, 5-hydroxypentanoic acid, cadaverine or 1,5-pentanediol by forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C5 backbone substrate such as malonyl-CoA or malonyl-[acp].
Abstract:
A fiber and method for making the same is disclosed that comprises a surface treatment, wherein the surface treatment comprises at least one clay nanoparticle component present in an amount greater than 2000 ppm on the surface of the fiber. Also disclosed is a fiber and method for making the same, comprising a surface treatment, wherein the surface treatment comprises at least one clay nanoparticle component and excludes flourochemicals.
Abstract:
The present invention relates to a process for producing hydrogen cyanide and more particularly, to a process for economically producing hydrogen cyanide. More particularly, the present invention relates to the controlled use of a ternary gas mixture including a methane-containing gas comprising less than 1 vol.% C2+ hydrocarbons, such as, for example, less than 5,000 mpm C2+ hydrocarbons, an ammonia-containing gas, and an oxygen-containing gas for production of hydrogen cyanide at enhanced levels of productivity and yield.
Abstract:
The present invention relates to an improved process for producing hydrogen cyanide. More particularly, the present invention relates to a commercially advantageous process for producing hydrogen cyanide at enhanced levels of productivity and yield while using natural gas comprising at least one C2+ hydrocarbon, carbon dioxide, and hydrogen sulfide. The natural gas is purified to be used as a source of methane-containing feedstock.
Abstract:
A process for the production of hydrogen cyanide comprises feeding a reaction mixture feed to a plurality of primary reactors each comprising a catalyst bed comprising platinum, wherein the reaction mixture feed comprises gaseous ammonia, methane, and oxygen gas, determining whether a percent yield of hydrogen cyanide in any of the plurality of primary reactors is at or below a threshold, identifying one or more suboptimal reactors amongst the plurality of primary reactors when the percent yield of hydrogen cyanide in any of the plurality of primary reactors is at or below the threshold, and supplementally feeding the reaction mixture feed to one or more supplementary reactors when the one or more suboptimal reactors are identified, wherein each of the one or more supplementary reactors comprises a catalyst bed comprising platinum. The supplemental feeding can be performed in place of the feeding of the reaction mixture feed to the one or more suboptimal reactors or in addition to the feeding of the reaction mixture feed to the one or more suboptimal reactors. The overall process is sufficient to maintain an overall measured hydrogen cyanide production rate amongst the one or more supplementary reactors and the primary reactors that is within a desired overall hydrogen cyanide production rate range.