Abstract:
The invention concerns a threaded tubular connection for drilling or operating hydrocarbon wells, comprising a portion of a tubular element with a male end having an axis of revolution and provided with a first threading extending about the axis of revolution, said male end portion being complementary with a portion of a tubular element with a female end having an axis of revolution and provided with a second threading extending about the axis of revolution, said male and female end portions being capable of being connected by makeup, each of the male and female end portions further comprising a sealing surface with a metal-metal interference, wherein the threading and the sealing surface of one of the two, male or female, end portions are coated with a first metallic anti-corrosion and anti-galling layer wherein zinc (Zn) is the major element by weight, said first metallic anti-corrosion and anti-galling layer being coated with a first passivation layer, and the complementary threading and sealing surface of the male or female end are coated with a second metallic anti-galling layer wherein zinc (Zn) is the major element by weight, the second metallic anti-galling layer being at least partially coated with a lubricant layer comprising a resin and a dry solid lubricant powder dispersed in said resin.
Abstract:
Lubrication and friction reduction improves fuel efficiency and reduces energy consumption. Effective and controllable material removal results in superior surface finishing and planarization. Nanosheets are developed with specific functionalization that can be used to reduce friction and wear, improve the fluidic property, and rheological performance.. The nanosheets can be from the graphite family, transition metal dichalcogenides, transition metal trichalcogenides, semiconducting chalcogenides, metal oxides, layered hydroxides, clays, ternary transition metal carbides and nitrides, and zirconium phosphates and phosphonates, and their corresponding dopants. Tribological, rheological, and polishing applications include lubricants, viscosity modification, and chemical-mechanical planarization. The nanosheets are useful in improving efficiency and lifetime of machinery, saving energy for mechanical operations, and optimizing manufacturing processes in surface engineering.
Abstract:
A nanolubricant composition is described where the lubricant composition includes a flowable oil or grease with nanoparticles dispersed in the flowable oil or grease. The nanoparticles are configured to polish a surface of a structure slowly over a period of time. The nanoparticles a hardness of at least about 7 Mohs and a diameter that is less than one half the arithmetic average roughness of the surface or a length that is less than one half of the arithmetic average roughness of the surface.
Abstract:
A bearing having a surface and a self-lubricating surface coating composition deposited on the surface, wherein the self-lubricating surface coating composition includes a curable acrylate composition having a metallic composition. The metallic composition having a metallic acrylate compound according to Formula I: and 30 mass% to 45 mass% PTFE fiber.
Abstract:
Disclosed herein is a lubricant composition comprising a hydrocarbon oil; inorganic particles; and molybdenum disulfide; the molybdenum disulfide being dispersed in the soybean oil. Disclosed herein too is a lubricant composition comprising a base oil; inorganic particles; and metal disulfide particles; the metal disulfide particles being dispersed in the base oil in the presence of an electrical field and a mechanical field. Disclosed herein too is a method comprising agitating a composition to form a lubricating composition; the composition comprising molybdenum disulfide, inorganic particles and a base oil; the agitating being conducted in the presence of a magnetic field that is greater than the earth's field, an electrical field or a combination comprising the magnetic field and the electrical field.
Abstract:
Die vorliegende Erfindung betrifft die Verwendung von nanoskaligen Materialien in einer Zusammensetzung, die zur Verhinderung von Ermüdungsschäden in Antriebselementen auf deren Oberflächen aufgetragen wird. Insbesondere werden durch diesen Auftrag die Oberflächen von Antriebselementen gegen die Bildung von Grauflecken (grey staining, surface fatigue, micro-pitting) und die Grübchenbildung geschützt. Das Auftreten von Ermüdungsschäden auf diesen Oberflächen wird dadurch verhindert oder vermindert.
Abstract:
The present invention provides a lubricating oil composition for reducing a friction coefficient adjacent to the surface of being subjected to lubrication. In particular, the present invention provides nanoporous particles capable of being dispersed in a lubricating oil composition comprising base oil having a lubricant viscosity. Since the nanoporous particles having nano-sized, oil soluble pores according to the present invention reduces a friction coefficient, and in the long term, gradually releases an effective ingredient, the lubricating oil composition comprising the same of the present invention can act as a reducing agent for reducing friction for a long period of time, and thereby, exhibit excellent lubricant effects.
Abstract:
An electric submersible motor is provided that includes a plurality of rotors and bearings mounted on a shaft, and a stator external to said rotors. A running clearance is located between an inner diameter of the stator and external diameter of the rotors, and includes a lubricating oil that includes a base hydrocarbon oil and a plurality of nanoparticles. Also provided is an improved lubricant oil and method of preparation thereof are provided. The lubricant oil includes a hydrocarbon containing base oil and a plurality of nanoparticles. The nanoparticles may be present in an amount up to 30% by volume.