Abstract:
Systems and methods for detecting defect propagation in a networked environment comprising a defect detection component to detect defects in an aggregate signal and/or in individual signals; and a replacement signal component to generate a maintenance signal to replace defective signals detected by the defect detection component. The maintenance signal can be a uniform signal type regardless of a type associated with a defective signal. The maintenance signal can replace a defective signal during aggregation, by an aggregation component. In another aspect, the maintenance signal can replace the defective signal during de-aggregation
Abstract:
In described embodiments, data pattern-based detection of loss of signal (LOS) is employed for a receive path of serializer/deserializer (SerDes) devices. Pattern-based LOS detection allows for detection of data loss over variety of types of connection media, and is generally insensitive to signal attenuation. More specifically, some described embodiments disclose reliable pattern-based detection of LOS across different connection media for incoming receive data when discreet time decision feedback equalization (DFE) is employed.
Abstract:
This disclosure describes techniques for operating a client device to communicate with a wireless access point to validate data within a frame by comparing channel quality metrics and duration metrics to thresholds. Information received within a validity window may be treated as correctly received even if the frame fails a subsequent verification process or if reception of the frame is terminated prior to the end of the frame.
Abstract:
In an embodiment, a method of determining whether to trigger an event based on data blocks having status data includes electronically receiving the data blocks over a channel, performing a data integrity check on the data blocks to determine whether a particular data block has a transmission fault, calculating a received error metric based on performing the data integrity check, and disabling an event trigger if the received error metric crosses a first error threshold.
Abstract:
Techniques for detecting discontinuous transmission (DTX) are disclosed. In an example method, given a sequence of bits that is known by a wireless receiver to be included in transmission bursts targeted to the wireless receiver and given a series of received signal samples corresponding to an expected transmission burst for the wireless receiver, the wireless receiver estimates a channel response and a location for the sequence within the series. The wireless receiver generates a plurality of bit estimates from the subset of received signal samples, based on the estimated channel response, compares the bit estimates to bits in the sequence of bits, and determines whether a valid burst for the wireless receiver is present, based on said comparing. The disclosed techniques are particularly suitable for use in detecting DTX in VAMOS scenarios.
Abstract:
A method and an apparatus for detecting a collision in a wireless multi-access channel are disclosed. The method of detecting the collision in the wireless multi-access according to an exemplary embodiment includes generating a request-to-send (RTS) message by a transmission terminal, transmitting the RTS message to a reception terminal, and receiving a response message from the reception terminal and determining whether a collision occurs based on a number of pieces of tone information included in the response message.
Abstract:
By utilizing Reed-Solomon erasure decoding algorithms and techniques, the system is able to perform error detection for the case where the number of bytes received in error exceeds a correcting capability of a decoder. The error detection can be used, for example, to determine whether a codeword is decodable, and whether the retransmission of data is necessary. The retransmission can be accomplished by assembling a message that is sent to another modem requesting retransmission of one or more portions of data, such as one or more codewords.
Abstract:
A method and apparatus for decoding portions of a data stream, wherein each portion comprises a plurality of samples. The method comprises storing portions of the data stream, decoding portions of the data stream to form decoded portions, and storing the decoded portions. The method further comprises identifying that a portion of the data stream is degraded. Following identifying that a portion of the data stream is degraded, the method generates a decoded portion for the degraded portion of the data stream using the stored decoded portions. The method also updates a state of a decoder by: estimating a pitch period of the degraded portion; selecting a group of successive samples of the stored portions of the data stream, the group of successive samples offset from the degraded portion in the data stream by a multiple of the estimated pitch period; and decoding the selected samples at the decoder.
Abstract:
In a signal detection apparatus, power detection section 101 detects power of an inputted received signal, and upon detection of power exceeding a power detection threshold, outputs a trigger to storage section 102. Storage section 102 stores a first received signal upon reception of the trigger and outputs the stored first received signal to multiplier 103 and newly stores a second received signal upon receipt of the next trigger. Multiplier 103 multiplies the second received signal by the first received signal, integrator 104 integrates the multiplication result from multiplier 103 during a predetermined duration to obtain a correlation value of the second and first received signals, and absolute value calculation section 105 calculates an absolute value of the correlation value from integrator 104. Determination section 106 determines the presence/absence of a detection-target signal based on the absolute value of the correlation value from absolute value calculation section 105.
Abstract:
In the field of mobile telecommunications, a method for checking a false alarm is provided. In the method, after a user in a Long Term Evolution (LTE) system receives control signaling for scheduling physical resources, Cyclic Redundancy Check (CRC) is performed on the control signaling; and if the CRC is passed, false alarm check is performed on the control signaling according to false alarm check bit(s) and padding bit(s) in the control signaling. An apparatus and a user equipment (UE) for checking a false alarm are also provided. According to the method, the apparatus, and the UE for checking a false alarm, the number of bits participating in the false alarm check is increased, thereby reducing the probability of false alarm occurrence, and improving receiving performance of the control signaling.