Abstract:
Some variations provide a low-adhesion coating comprising a continuous matrix containing a first component, a plurality of inclusions containing a second component, and a solid-state lubricant distributed within the coating, wherein one of the first component or the second component is a low-surface-energy polymer, and the other of the first component or the second component is a hygroscopic material. The solid-state lubricant may be selected from graphite, graphene, molybdenum disulfide, tungsten disulfide, hexagonal boron nitride, or poly(tetrafluoroethylene) or other fluoropolymers. The solid-state lubricant particles may be coated with a metal selected from cadmium, lead, tin, zinc, copper, nickel, or alloys containing one or more of these metals. The solid-state lubricant is typically characterized by an average particle size from about 0.1 μm to about 500 μm. The solid-state lubricant is preferably distributed throughout the coating.
Abstract:
A low friction wear surface with a coefficient of friction in the superlubric regime including graphene and nanoparticles on the wear surface is provided, and methods of producing the low friction wear surface are also provided. A long lifetime wear resistant surface including graphene exposed to hydrogen is provided, including methods of increasing the lifetime of graphene containing wear surfaces by providing hydrogen to the wear surface.
Abstract:
A multilayer paper-based wet friction material of an automotive auto transmission may improve noise and vibration characteristics, heat resistance, wear resistance, compression resistance, and oil absorbency. The paper-based wet friction material of an automotive auto transmission includes: a first layer using cellulose pulp as a matrix and including a first functional additive; a second layer stacked on the first layer, using the cellulose pulp as the matrix, and including the second functional additive; and a hydrogen bonding layer mediating between the first layer and the second layer. The cellulose pulp of the first and second layers is cotton linter.
Abstract:
This invention relates to carbon-based materials as anti-friction and anti-wear additives for advanced lubrication purposes. The materials comprise carbon nanotubes suspended in a liquid hydrocarbon carrier. Optionally, the compositions further comprise a surfactant (e.g., to aid in dispersion of the carbon particles). Specifically, the novel lubricants have the ability to significantly lower friction and wear, which translates into improved fuel economies and longer durability of mechanical devices and engines.
Abstract:
Some embodiments described herein provide a bicomponent seal comprising an outer sheath comprising a nanocomposite material comprising aligned elongated carbon nanoparticles embedded in a first polymer; and an inner core comprising a second polymer. In some embodiments, the elongated carbon nanoparticles may be selected from the group consisting of graphene nanoribbons; carbon nanotubes; carbon nanohorns; and any combination thereof.
Abstract:
The present invention relates to a ceramic complex coating material having heat resistance, abrasion resistance, and low friction characteristics and applied on a surface of a rotating shaft to increase resistance of a mechanical element such as a rotating shaft of a turbine or the like in sliding-contact operation at a high speed without oil feeding under high temperature conditions of 400 to 900° C. to friction, heat, and abrasion resulted from contact with a bearing.The ceramic complex lubricant composition according to an embodiment of the present invention may show an excellent lubrication performance, have a high heat resistance to allow for a continuous use at a temperature of 400° C. or more, and exhibit an excellent abrasion resistance. The composition according to the embodiment of the present invention may be used as a coating lubricant for a surface of many types of sliding members in a turbine shaft for power generation, a skirt member of an automobile engine cylinder, a steel hot rolling plant, wire rod rolling or the like which are driven in a high temperature environment.
Abstract:
An article comprises a substrate; a coating comprising a carbon composite; and a binding layer disposed between the substrate and the coating. The carbon composite comprises carbon and a binder containing one or more of the following: SiO2; Si; B; B2O3; a metal; or an alloy of the metal; and the metal comprises one or more of the following: aluminum; copper; titanium; nickel; tungsten; chromium; iron; manganese; zirconium; hafnium; vanadium; niobium; molybdenum; tin; bismuth; antimony; lead; cadmium; or selenium.
Abstract:
Provided is a sliding member, method for manufacturing sliding member, and compressor swash plate using sliding member in which adhesion between the substrate and the resin is enhanced, and which has the excellent durability whereby peeling of the resin film from the substrate does not occur due to prolonged sliding even under harsh load conditions. The sliding member provides a substrate irradiated laser light with energy intensity per unit area of 0.053 J/mm2 or more and configured an uneven part formed toward a vertical direction by the irradiated laser light and a melted and solidified portion on the uneven part and a resin film including solid lubricant and a binder resin on the substrate.
Abstract translation:本发明提供一种滑动部件,滑动部件的制造方法以及使用滑动部件的压缩机斜盘,其中,基板和树脂之间的粘附力增强,并且具有优异的耐久性,由此不会由于树脂膜从基板的剥离而发生 甚至在恶劣的负载条件下延长滑动。 滑动构件提供每单位面积的能量强度为0.053J / mm 2以上的基板照射的激光,并且通过照射的激光在垂直方向上形成凹凸部,在该凹凸部上形成熔融固化部, 膜,其包括固体润滑剂和粘合剂树脂。
Abstract:
A contact member or a slide member of the present invention comprises a surface treatment film (160) including two or more coating layers stacked together, in at least a portion of a contact surface or a slide surface thereof, wherein each of the coating layers includes synthetic resin and a solid lubricant, and wherein the solid lubricant (162) of the coating layer located at an innermost side is lower in content percentage than the solid lubricant of the coating layer located at an outermost side. A contact member or a slide member of the present invention comprises a surface treatment film (160) including two or more coating layers stacked together, in at least a portion of a contact surface or a slide surface thereof, each of the coating layers includes synthetic resin, and the coating layer located at an innermost side is larger in elastic deformation amount than the coating layer located at an outermost side.
Abstract:
An object of the present invention is to provide a sliding member capable of rapidly wrapping a mating member, and reducing the surface roughness of the mating member after wrapping. The present invention relates to a sliding member for sliding with a mating member subjected to hardening treatment, the sliding member including a coating layer containing a binder resin, molybdenum disulfide, and hard substance particles in massive form.