Abstract:
A field emission display device has a faceplate and a backplate. The faceplate includes a faceplate interior side with an active region made of a plurality of phosphor pixel elements; and the backplate has a backplate interior side with a plurality of field emitters. Sidewalls are positioned between the faceplate and the backplate, to form an enclosed sealed envelope between the sidewalls, backplate interior side and the faceplate interior side. At least one spacer wall in the envelope supports the backplate and the faceplate against forces acting in a direction toward the envelope. At least one internal structure fixes and constrains the faceplate and the backplate, and aligns a plurality of phosphor pixels with corresponding field emitters. Additonally, the faceplate can include at least one faceplate fiducial, and the backplate include a corresponding backplate fiducial. The faceplate fiductial is optically aligned with the backplate fiducial. First, the spacer wall is positioned in the wall gripper. The faceplate and backplate fiducials are then optically aligned, and the spacer wall then introduced into the locator. Phosphor pixels are aligned with their corresponding field emitters. There is no need for external fixturing devices in the high temperature bonding and sealing processes of the display.
Abstract:
A component of a flat-panel display is cleaned with a fluid having a mole-fraction dominant constituent. The cleaning operation is performed by subjecting the component to the cleaning fluid while its absolute pressure exceeds the absolute pressure at the triple point of the dominant constituent and is at least 20 % of the absolute pressure value at the critical point of the dominant constituent. The temperature and pressure of the cleaning fluid are typically controlled in a direction toward the supercritical state of the dominant constituent.
Abstract:
Image degradation that can occur in a flat-panel CRT display as a result of electron deflection caused by energy flowing through a spacer system (16) in the display is alleviated by appropriately controlling thermal, electrical, and dimensional parameters of the spacer system. In particular, spacer parameter C is selected to be low. Parameter C equals αAVh2/fλ¿AV?, where αAV is the average thermal coefficient of electrical resistivity of the spacer system, h is the height of the spacer system, λAV is the average thermal conductivity of the spacer system, and f is the fraction of the spacer cross-sectional area to the display's active area. Parameter C is normally 6X10?-5 m3¿/watt or less. Height h is normally 0.3 mm or more.
Abstract:
Seal material bars and methods for forming seal material bars, a seal material frame, and method for forming a flat panel display using the same. Bars of seal material (1101-1104) are made by extruding a mixture of glass frit and organic compound. In one embodiment, the glass frit bars have joining features (1111-1118) formed in them. Ceramic material is also extruded so as to form seal material bars. The seal material bars are placed between the backplate and the faceplate and glass frit slurry may be placed between adjoining seal material bars. A heating step melts the seal material so as to form a seal interior region. Alternatively seal material bars may be joined in a first step to form a seal material frame. A further embodiment comprises extrusion of a hollow rectangular shape of seal material which is cut crosswise into integral seal material frames.
Abstract:
An electrode (12 or 30) of an electron-emitting device has a plurality of openings (16 or 60) spaced laterally apart from one another. The openings can be used, as needed, in selectively separating one or more parts of the electrode from the remainder of the electrode during corrective test directed towards repairing any short-circuit defects that may exist between the electrode and other overlying or underlying electrodes. When the electrode with the openings is an emitter electrode (12), each opening (16) normally extends fully across an overlying control electrode (30). When the electrode with the openings is a control electrode (30), each opening (60) normally extends fully across an underlying emitter electrode (12). The short-circuit repair procedure typically entails directing light energy on appropriate portions of the electrode with the openings.
Abstract:
A technique for creating a patterned coating entails forming a first region (26) over a primary component (22). A second region (28) is formed over part of the first region. The first region is etched so as to undercut the second region, thereby forming a gap (30) below part of the second region. Coating material is then provided over the structure. Due to the presence of the gap, the coating material accumulates over the structure in a pair of segments spaced apart along the gap. One coating segment (32A) overlies the primary component. The other coating segment (32B) overlies the second region.
Abstract:
A flat panel display (300) having a faceplate structure (320), a backplate structure (330), a focusing structure (333a), and a plurality of spacers (340). The backplate structure includes an electron emitting structure (332) which faces the faceplate structure. The focusing structure has a first surface which is located on the electron emitting structure, and a second surface which extends away from the electron emitting structure. The electrical end of the combination of the focusing structure and the electron emitting structure is located at an imaginary plane located intermediate the first and second surfaces of the focusing structure. The spacers are located between the focusing structure and the light emitting structure. Each spacer is located within a corresponding groove in the focusing structure such that the electrical end of each spacer is located coincident with the electrical end of the combination of the focusing structure and the electron emitting structure.
Abstract:
Methods and structures are provided which reduce charge build up on spacer walls in a flat panel display. In one embodiment, the order of activating the electron emitting elements is modified such that the electron emitting elements adjacent to the spacers are activated before the electron emitting elements which charge thespacers (501, 502, 503) to an undesirable level. In another embodiment, face electrodes (501a, 502a, 503a) which are located on the surface of the spacer are connected to a common bus (504), thereby distributing the charge built up on any particular spacer. The common bus (504) can further be connected to a capacitor (1010) which is located either inside or outside the active region of the flat panel display, thereby increasing the charging time constant of the spacers. The capacitor can be connected to ground or to a high voltage supply (1011). In another embodiment, the charging time constant of the spacers is increased by fabricating the spacers from a material having a high dielectric constant, such as dispersion of aluminum oxide, chromium oxide and titanium oxide, wherein the titanium oxide makes up approximately four percent of the spacer material.
Abstract:
A getter (50 or 74) situated in a cavity of a hollow structure, such as a flat-panel device, is activated by directing light energy locally through part of the hollow structure and onto the getter. The light energy is typically provided by a laser beam (60). The getter, typically of the non-evaporable type, is usually inserted as a single piece of gettering material into the cavity. The getter normally can be activated/re-activated multiple times in this manner, typically during the sealing of different parts of the structure together. The getter-containing cavity can be formed by a pair of plate structures (40 and 42) sandwiched around and outer wall (44), or by an auxiliary compartment (72) connected to a larger main compartment (70) typically constituted by the plate structures and outer wall.
Abstract:
The invention provides spacers for separating and supporting a faceplate structure and a backplate structure in a flat panel display, and methods for fabricating these spacers. Each spacer is typically made of ceramic, such as alumina, containing transition metal oxide, such as titania, chromia or iron oxide. Each spacer can be fabricated with an electrically insulating core and electrically resistive skins. The insulating core can be a wafer formed of ceramic such as alumina, and the resistive skins can be formed by laminating electrically resistive wafers, formed from alumina containing transition metal oxide, to the outside surfaces of the insulating core. Each spacer can also have a core of electrically insulating ceramic composition made of a ceramic containing a transition metal oxide in its higher oxide states, and electrically resistive outside surfaces made of a ceramic containing a transition metal oxide in lower oxide states. Face and/or edge metallization strips can optionally be provided on each spacer.