Abstract:
The present invention provides a method for preparing betulin-3-acetate including alcoholyzing betulin 3,28-dibenzoate; a process for preparing betulin-3-acetate including: (1) acylating betulin to provide betulin 3,28-dibenzoate and (2) alcoholyzing betulin 3,28-dibenzoate to provide betulin-3-acetate; and a process for preparing betulinic acid including: (1) acylating betulin to provide betulin 3,28-dibenzoate; (2) alcoholyzing betulin 3,28-dibenzoate to provide betulin-3-acetate; (3) oxidizing betulin-3-acetate to provide betulinic aldehyde-3-acetate; (4) oxidizing betulinic aldehyde-3-acetate to provide betulinic acid-3-acetate; and (5) deprotecting betulinic acid-3-acetate to provide betulinic acid.
Abstract:
This invention relates to diamondoid derivatives which exhibit therapeutic activity. Specifically, the diamondoid derivatives herein exhibit therapeutic effects in the treatment of neurologic disorders. Also provided are methods of treatment, prevention and inhibition of neurologic disorders in a subject in need.
Abstract:
Novel compounds having a hybrid cubic/hexagonal diamond crystal structure are disclosed. Each of the four compounds have the stoichiometric formula C 26 H 32 and a molecular weight of 344. The four compounds are contemplated to have a utility in diamond film nucleation.
Abstract:
Novel positive-working photoresist compositions are disclosed. The monomers of the base resin of the resist contain diamondoid-containing pendant groups higher than adamantane in the polymantane series; for example, diamantane, triamantane, tetramantane, pentamantane, hexamantane, etc. The diamondoid-containing pendant group may have hydrophilic-enhancing substituents such as a hydroxyl group, and may contain a lactone group. Advantages of the present compositions include enhanced resolution, sensitivity, and adhesion to the substrate.
Abstract:
Novel optical devices based on diamondoid-containing materials are disclosed. Materials that may be fabricated from diamondoids include diamondoid nucleated CVD films, diamondoid-containing CVD films, molecular crystals, and polymerized materials. Devices that may be fabricated from the diamondoid-containing materials disclosed herein include solid state dye lasers, semiconductor lasers, light emitting diodes, photodetectors, photoresistors, phototransistors, photovoltaic cells, solar cells, anti-reflection coatings, lenses, mirrors, pressure windows, optical waveguides, and particle and radiation detectors.
Abstract:
Novel diamondoid-based components that may be used in nanoscale construction are disclosed. Such components include rods, brackets, screws, gears, rotors, and impellers. Subassemblies (or subsystems) may comprise one or more diamondoid components. Exemplary subassemblies include atomic force microscope tips, molecular tachometers and signal waveform generators, and self-assembling cellular membrane pores and channels.
Abstract:
Novel heterodiamondoids are disclosed. These heterodiamondoids are diamondoids that include heteroatoms in the diamond lattice structure. The heteroatoms may be either electron donating, such that an n-type heterodiamondoid is created, or electron withdrawing, such that a p-type heterodiamondoid is made. Bulk materials may be fabricated from these heterodiamondoids, and the techniques involved include chemical vapor deposition, polymerization, and crystal aggregation. Junctions may be made from the p-type and n-type heterodiamondoid based materials, and microelectronic devices may be made that utilize these junctions. The devices include diodes, bipolar junction transistors, and field effect transistors.
Abstract:
Novel heterodiamondoids are disclosed. These heterodiamondoids are diamondoids that include heteroatoms in the diamond lattice structure. The heteroatoms may be either electron donating, such that an n-type heterodiamondoid is created, or electron withdrawing, such that a p-type heterodiamondoid is made. Bulk materials may be fabricated from these heterodiamondoids, and the techniques involved include chemical vapor deposition, polymerization, and crystal aggregation. Junctions may be made from the p-type and n-type heterodiamondoid based materials, and microelectronic devices may be made that utilize these junctions. The devices include diodes, bipolar junction transistors, and field effect transistors.
Abstract:
Hydroprocessing such as hydrocracking is advantageously employed in processes for the recovery and purification of higher diamondoids from petroleum feedstocks. Hydrocracking and other hydroprocesses degrade nondiamondoid contaminants.
Abstract:
This invention is related to heteroatom containing diamondoids (i.e., "heterodiamondoids" ) which are compounds having a diamondoid nucleus in which one or more of the diamondoid nucleus carbons has been substitutionally replaced with a noncarbon atom. These heteroatom substituents impart desirable properties to the diamondoid. In addition, the heterodiamondoids are functionalized affording compounds carrying one or more functional groups covalently pendant therefrom. This invention is further related to polymerizable functionalized heterodiamondoids. In a preferred aspect of this invention the diamondoid nuclei are triamantane and higher diamondoid nuclei. In another preferred aspect, the heteroatoms are selected to give rise to diamondoid materials which can serve as n- and p-type materials in electronic devices can serve as optically active materials.