Abstract:
A wireless system broadcasts data in frames, each frame having F slots. Output from a matched filter is used to combine K slots to generate profile data, where K is less than F. N peak values respectively from n peak positions are selected from the profile data, where n is greater than one. A correlator is employed, together with the n peak positions and S slots subsequent the K slots, to generate n×S correlation values. Respective combination values for the n peak positions are generated by coherently combining the correlation values, and combining the coherent combination results with the non-coherent n peak values. The combination values are respectively used to generate SNR values for each of the n peak positions. The peak position having the best respective SNR value is then selected as a slot synchronization position.
Abstract:
A pixel matrix used in a liquid crystal display, including a plurality of pixel units. Each pixel unit includes a storage unit, a first switch and a second switch. The storage unit determines the displayed gray scale of the pixel unit according to a pixel voltage applied to the storage unit. The first switch is coupled between a first data line, a first scan line and the storage unit. The first switch connects or disconnects the first data line with the storage unit, according to the state of the signal on the first scan line. On the other hand, the second switch is coupled between a second data line, a second scan line and the storage unit. The second switch connects or disconnects the second data line with the storage unit, according to the state of the signal on the second scan line.
Abstract:
A source driver and an internal data transmission method are provided. The present invention employs specially designed switch units and creates specially designed data paths in a source driver, which matches with the driving method for dot invesion and the specially designed pixel array. When the dot inversion driving method is used on a pixel array of a specific design, each output buffer and digital-to-analog converter inside the source driver continuously output voltages of positive polarity and voltages of negative polarity, instead of switching between positive and negative polarities. Consequently, the swing voltages that the source driver outputs can be lowered, the power consumption can also be reduced accordingly, a smaller area is occupied, and the costs are reduced.
Abstract:
A soft-start high driving method and device to drive display panels are provided. The driving method includes the following steps. First, a display signal is provided for driving a display panel and displaying images. If no predetermined event happens, then, a high-driving mode is used for dynamically adjusting the driving capacity of the display signal. Finally, if a predetermined event happens, the soft-start high-driving mode is performed to dynamically adjust the driving capacity of the display signal.
Abstract:
A method and system for guard interval size and mode detection of a DVB signal. The detection system comprises guard interval detection systems (GIDS), each corresponding to a mode and performing parallel search for the guard interval size based on the OFDM symbol period of the mode. A correlation calculator of a GIDS calculates a correlation signal corresponding to each guard interval size. Characteristics such as maximum value, number of points above a threshold, and a maximum value position in a sample period for each correlation signal are determined and compared, and a valid guard interval size is selected according to the determined characteristics. A mode information combine block retrieves and analyses the detection result from the GIDS.
Abstract:
A driving circuit of a liquid crystal display is provided. The driving circuit comprises: a plurality of gate drivers for selectively driving a plurality of thin film transistors of the liquid crystal display; a plurality of source drivers for receiving an image signal, the plurality of source drivers cooperating with the plurality of gate drivers to display an image on the liquid crystal display, each of the plurality of source drivers further comprising an adjustable common voltage generating circuit, each the adjustable common voltage generating circuit compensating, a common voltage output from each the adjustable common voltage generating circuit to make each the common voltage output from each the adjustable common voltage generating circuit the same or to make each the common voltage output to an ITO layer of a panel of the liquid crystal display the same, based on a common voltage adjustable data and a clock signal; and a timing sequence controller for providing a control signal and a data flow to the plurality of gate drivers and the plurality of source drivers and providing the common voltage adjustable data to each the adjustable common voltage generating circuit.
Abstract:
The invention is a display panel with dot or column inversion capable of saving power, which uses shunt resistors composed of thin film transistors (TFTs) and an inverter to balance the positive and negative charge or reduce the difference between the positive and negative charge, thereby decreasing power consumption in the switch. The display panel with dot or column inversion capable of saving power includes: an inverter for electrically controlling the operating mode of a display panel; a first plurality of switches connected in series between the display panel and a data driver, to supply power from the data driver to pixels on the display panel; and a second plurality of switches connected in parallel between every two channels with the opposite polarities of the data driver outside the display panel, to construct an equivalent circuit loop according to the operation mode to be selected using the equivalent circuit loop, so as to reach the charge balance on every two channels with the opposite polarities powered by the data driver.
Abstract:
A method for dynamically adjusting the power consumption of a multi-carrier receiver and a multi-carrier receiver with dynamically power adjustment. The method includes receiving a multi-carrier signal, wherein the multi-carrier signal comprises a plurality of sub-carriers. Channel characteristics of each sub-carrier are estimated according to the demodulated multi-carrier signal. ICI is estimated from the demodulated multi-carrier signal. A system performance is detected. The estimated ICI is subtracted when the ICI exceeds an ICI threshold and the system performance is less than a system performance threshold. The demodulated multi-carrier signal is then equalized is based on the estimated channel characteristics, and the system performance is updated according to the equalized multi-carrier signal.
Abstract:
In order to mitigate electromagnetic interference (EMI), the present invention provides a circuit device for an electronic device including a signal generating unit, a phase adjusting unit and an output interface. The signal generating unit generates a plurality of in-phase signals. The phase adjusting unit is coupled to the signal generating unit and is used for adjusting the plurality of in-phase signals to generate a plurality of output signals, where all or some of the output signals have different phases. The output interface is coupled to the phase adjusting unit and is used for outputting the plurality of output signals to a plurality of signal processing units for image processing.
Abstract:
A panel display apparatus and a method for driving the display panel are provided. The panel display apparatus includes a display panel and a plurality of source drivers. The display panel with X*Y display unit includes X+1 data lines, and each source driver has M+1 data output terminals DOi,j. In addition, each of the data output terminals of the source drivers is electrically coupled to a corresponding data line of the display panel, respectively. The mentioned DOi,j represents the jth data output terminal of the ith source driver. Wherein, the data output terminal DOi,M and the data output terminal DOi+1,0 are electrically coupled to a same data line of the display panel.