Abstract:
A signal transmission system of a flat panel device includes an encoder, a transmitter, a receiver, and a decoder. The encoder converts a digital signal to a switch control signal. The transmitter includes 4n signal-lines for transmitting a current signal according to the switch control signal. The receiver includes 4n terminations, a plurality of terminal resistors, and a plurality of comparators. The receiver generates a group of voltage levels according to the current signal. Each comparator is coupled between any two terminations so as to generate a group of voltage differences. The decoder converts the group of voltage differences to the digital signal.
Abstract:
A method for dynamically adjusting the power consumption of a multi-carrier receiver and a multi-carrier receiver with dynamically power adjustment. The method includes receiving a multi-carrier signal, wherein the multi-carrier signal comprises a plurality of sub-carriers. Channel characteristics of each sub-carrier are estimated according to the demodulated multi-carrier signal. ICI is estimated from the demodulated multi-carrier signal. A system performance is detected. The estimated ICI is subtracted when the ICI exceeds an ICI threshold and the system performance is less than a system performance threshold. The demodulated multi-carrier signal is then equalized is based on the estimated channel characteristics, and the system performance is updated according to the equalized multi-carrier signal.
Abstract:
A method of generating a smoothed transport stream to an MPEG decoder for a diversity combine digital television receiver includes generating a plurality of synchronization clocks and demodulated signals according to a plurality of digital television signals received from a plurality of antennas; monitoring a signal quality associated with each of the digital television signals; combining at least demodulated signals having a signal quality being greater than a predetermined threshold to thereby form a combined signal; generating transport stream packets according to the combined signal; selecting a synchronization signal corresponding to a digital television signal having a signal quality being greater than a second predetermined threshold as a selected synchronization signal; and generating a smoothed transport stream having packets being uniformly spaced according to the transport stream packets and the selected synchronization signal.
Abstract:
A signal processing apparatus is provided. The signal processing apparatus includes an inner-code decoder, an outer-code decoder, and an error detection unit. The inner-code decoder decodes an input data stream to generate a first output data stream, wherein the input data stream is coded using a concatenated coding scheme including an outer coding and an inner coding. The outer-code decoder decodes the first output data stream to generate a second output data stream. The error detection unit performs an error detection upon the second output data stream to generate an error detection result. The decision logic sets error indication information of the second output data stream according to at least the error detection result.
Abstract:
A method for dynamically adjusting the power consumption of a multi-carrier receiver and a multi-carrier receiver with dynamically power adjustment. The method includes receiving a multi-carrier signal, wherein the multi-carrier signal comprises a plurality of sub-carriers. Channel characteristics of each sub-carrier are estimated according to the demodulated multi-carrier signal. ICI strength is estimated from the demodulated multi-carrier signal. A system performance is detected. The estimated ICI is subtracted when the ICI strength exceeds an ICI threshold and the system performance is less than a system performance threshold. The demodulated multi-carrier signal is then equalized is based on the estimated channel characteristics, and the system performance is updated according to the equalized multi-carrier signal.
Abstract:
A reset signal filter includes a power voltage detector and a reset signal detector or includes only one reset signal detector. The power voltage detector includes a comparators and a basic logic gates (e.g. AND gate, OR gate, inverter, etc). The reset signal detector includes a comparator, N flip flops connected in series, an AND gate, an OR gate, a multiplexer and an output flip flop. The reset signal filter receives a first reset signal generated by a power voltage detector or a Schmitt trigger buffer and utilizes N flip flops to register the signal level of the first reset signal for N clock periods. Then the reset signal filter determines if the first rest signal is changed during N clock periods, and outputs a second reset signal.
Abstract:
The present invention provides a transmission signal generating method for a display device to compensate channel effect. The transmission signal generating method includes using a plurality of signal amplitudes and a first signal direction to generate a plurality of positive levels, using the plurality of signal amplitudes and a second signal direction to generate a plurality of negative levels, and using a plurality of signaling lines for transmission of the pluralities of negative and positive levels. A first positive level and a first negative level both have a minimum signal amplitude of the plurality of signal amplitudes. The amplitude difference of the first positive and negative levels is greater than an amplitude difference of any two neighboring levels of the plurality of negative levels and also the plurality of positive levels.
Abstract:
A data encoding and decoding method capable of lowering signal power spectral density for a binary data transmission system is disclosed. The data encoding method includes receiving binary data, performing adaptive mode tracking encoding for the binary data to generate a first encoding result, performing bit stuffing encoding for the first encoding result to generate a second encoding result, performing bit stationary state resuming encoding for the second encoding result to generate a third encoding result, and outputting the third encoding result.
Abstract:
A scaling apparatus set in a receiver is disclosed. The receiver includes a symbol-processing unit. The scaling apparatus includes a calculating unit and a scaling unit. The calculating unit estimates the signal strength of an input symbol and generates a scaling factor accordingly. The scaling unit scales an output symbol outputted from the symbol-processing unit according to the scaling factor. The output symbol is generated from the symbol-processing unit through processing the input symbol.
Abstract:
In order to increase charge time of thin-film transistor (TFT) cells of a display device, the present invention provides a driving device, which includes a timing controller, a column driver module and at least a delay module. The timing controller is used for outputting at least a load signal. The column driver module is coupled to the timing controller and includes at least a column driver. The delay module can be installed in the column driver module or the timing controller, and is used for delaying the load signal for a predetermined time. The load signal is utilized to trigger the plurality of column drivers to output video data provided by a video data source and the video data corresponds to pixels on a panel of the display device. The driving device can use in a cascading, point-to-point or bus-type interfacing architecture to transmit the load signal.