Abstract:
Grids (30) and collimators, for use with electromagnetic energy emitting devices (61), include at least a metal layer that is formed, for example, by electroplating/electroforming or casting. The metal layer includes top and bottom surfaces, and a plurality of solid integrated walls (32). Each of the solid integrated walls extends from the top to bottom surface and has a plurality of side surfaces. The side surfaces of the solid integrated walls are arranged to define a plurality of openings (31) extending entirely through the layer. At least some of the walls (32) also can include projections extending into the respective openings formed by the walls (32). The projections can be of various shapes and sizes, and are arranged so that a total amount of wall material intersected by a line propagating in a direction along an edge of the grid (30) is substantially the same as another total amount of wall material intersected by another line propagating in another direction substantially parallel to the edge of the grid (30) at any distance from the edge. Methods to fabricate these grids (30) using copper, lead, nickel, gold, any other electroplating/electroforming materials or low melting temperature metals are described.
Abstract:
Methods of using detection of PD-L1 expression by circulating cancer cells in the screening, monitoring, treatment and diagnosis of cancer in subjects are disclosed. The methods are based on assaying one or more of circulating tumor cells (CTCs), epithelial to mesenchymal transition CTCs (EMTCTCs), cancer associated macrophage-like cells (CAMLs), and cancer associated vascular endothelial cells (CAVEs) isolated from a subject having cancer for PD-L1 expression.
Abstract:
A microfilter having a hydrophilic surface and suited for size-based capture and analysis of cells, such as circulating cancer cells, from whole blood and other human fluids is disclosed. The filter material is photo-definable, allowing the formation of precision pores by UV lithography. Exemplary embodiments provide a device that combines a microfilter with 3D nanotopography in culture scaffolds that mimic the 3D in vivo environment to better facilitate growth of captured cells.
Abstract:
Circulating tumor cells (CTCs) are associated with metastasis of malignant solid tumors in a patient. Presented here is evidence that CTCs exhibit cell cycle phase variability and that there is a strong correlation between the number of CTCs in a mitotic cell cycle phase and the prospects for long term survival of the subject from which the cells were obtained. Also presented herein are methods of determining the mitotic cell cycle phase of CTCs from a patient having cancer and using the information in grading malignant solid tumors and predicting the likelihood of survival of the patient.
Abstract:
A simple and accurate method for characterizing biomarkers in a biological sample using multiple rounds of fluorescent staining is described. The method involves the steps of quenching underrivatizing, amine stripping and regaining (QUAS-R) of cells, tissue or any biological sample.
Abstract:
Un procedimiento para predecir la probabilidad de supervivencia de un sujeto que tiene cáncer, en el que el procedimiento comprende: (a) obtener una población de CTC de una muestra biológica de un sujeto que tiene cáncer, en el que preferentemente la muestra biológica se selecciona del grupo que consiste en sangre periférica, sangre, ganglios linfáticos, médula ósea, líquido cefalorraquídeo y orina, en el que incluso más preferentemente, la muestra biológica es al menos aproximadamente 7,5 ml de sangre periférica, y (b) cribar la población de CTC en busca de células en una fase del ciclo celular mitótico, en el que cuando se identifica una o más CTC por estar en una fase del ciclo celular mitótico, se predice que el sujeto tiene una menor probabilidad de supervivencia en comparación con un sujeto que tiene el mismo cáncer que no tiene una o más CTC identificadas por estar en una fase del ciclo celular mitótico, por lo que predice la probabilidad de supervivencia de un sujeto que tiene cáncer, preferentemente en el que la fase del ciclo celular mitótico se determina tiñendo las células con una tinción nuclear y determinar visualmente la fase del ciclo celular.
Abstract:
The characterization of nucleic acids obtained from cancer-associated cells circulating in the blood of a subject, and the use of such characterizations in cancer screening, diagnostics, treatment, and recurrence, are disclosed.
Abstract:
A new sensitive cell biomarker of solid tumors is identified in blood. This biomarker can be used to determine presence of carcinomas, rapid determination of treatment response, early detection of cancer, early detection of cancer recurrence, and may be used to determine therapy.
Abstract:
A microfilter comprising a polymer layer formed from epoxy-based photo-definable dry film, and a plurality of apertures each extending through the polymer layer. A microfilter comprising two or more polymer layers formed from epoxy-based photo-definable dry film, and a plurality of apertures or open areas each extending through the polymer layer. A method of forming a microfilter is also disclosed. The method includes providing a first layer of epoxy-based photo definable dry film disposed on a substrate, exposing the first layer to energy through a mask to form a pattern, defined by the mask, in the first layer of dry film, forming, from the exposed first layer of dry film, a polymer layer having a plurality of apertures extending therethrough, the plurality of apertures having a distribution defined by the pattern, and removing the polymer layer from the substrate. Unique filter holder designs and methods appropriate to hold microfilters to collect the rare cells and allow performing assays in the filter holder are provided. The invention also describes the use of the microfilter and filter holder to collect rare cells from body fluids and perform assays. Rare cells collected on the microfilter in accordance with embodiments of the present invention can be used for medical and biological research applications.
Abstract:
Methods of using detection of PD-L1 expression by circulating cancer cells in the screening, monitoring, treatment and diagnosis of cancer in subjects are disclosed. The methods are based on assaying one or more of circulating tumor cells (CTCs), epithelial to mesenchymal transition CTCs (EMTCTCs), cancer associated macrophage-like cells (CAMLs), and cancer associated vascular endothelial cells (CAVEs) isolated from a subject having cancer for PD-L1 expression.