Abstract:
A microfilter having a hydrophilic surface and suited for size-based capture and analysis of cells, such as circulating cancer cells, from whole blood and other human fluids is disclosed. The filter material is photo-definable, allowing the formation of precision pores by UV lithography. Exemplary embodiments provide a device that combines a microfilter with 3D nanotopography in culture scaffolds that mimic the 3D in vivo environment to better facilitate growth of captured cells.
Abstract:
A microfilter having a hydrophilic surface and suited for size-based capture and analysis of cells, such as circulating cancer cells, from whole blood and other human fluids is disclosed. The filter material is photo-definable, allowing the formation of precision pores by UV lithography. Exemplary embodiments provide a device that combines a microfilter with 3D nanotopography in culture scaffolds that mimic the 3D in vivo environment to better facilitate growth of captured cells.
Abstract:
A microfilter having a hydrophilic surface and suited for size-based capture and analysis of cells, such as circulating cancer cells, from whole blood and other human fluids is disclosed. The filter material is photo-definable, allowing the formation of precision pores by UV lithography. Exemplary embodiments provide a device that combines a microfilter with 3D nanotopography in culture scaffolds that mimic the 3D in vivo environment to better facilitate growth of captured cells.
Abstract:
A microfilter having a hydrophilic surface and suited for size-based capture and analysis of cells, such as circulating cancer cells, from whole blood and other human fluids is disclosed. The filter material is photo-definable, allowing the formation of precision pores by UV lithography. Exemplary embodiments provide a device that combines a microfilter with 3D nanotopography in culture scaffolds that mimic the 3D in vivo environment to better facilitate growth of captured cells.
Abstract:
A microfilter having a hydrophilic surface and suited for size-based capture and analysis of cells, such as circulating cancer cells, from whole blood and other human fluids is disclosed. The filter material is photo-definable, allowing the formation of precision pores by UV lithography. Exemplary embodiments provide a device that combines a microfilter with 3D nanotopography in culture scaffolds that mimic the 3D in vivo environment to better facilitate growth of captured cells.
Abstract:
Micro- and nanofilters with precision pore sizes and pore layout have applications in many fields including capturing circulating tumor cells and fetal cells in blood, water treatment, pathogen detection in water, etc. Methods to fabricate micro- and nanofilters not using track etching or reactive ion etching are provided, allowing easy fabrication of single layer or stack of films simultaneously, and/or stack of films on rolls. Microfilter can be made using one or more layers of material. Invention enables mass production of microfilters with lithographic quality at low cost. Isolation, enumeration and characterization of circulating tumor cells using microfilters provides (i) guides to cancer treatment selection and personalize dosage, (ii) low cost monitoring for treatment response, disease progression and recurrence, (iii) assessment of pharmacodynamic effects, (iv) information on mechanisms of resistance to therapy, and (v) cancer staging. Microfabrication methods are also applicable to fabrication of any free standing patterned polymeric films.
Abstract:
A new sensitive cell biomarker of solid tumors is identified in blood. This biomarker can be used to determine presence of carcinomas, rapid determination of treatment response, early detection of cancer, early detection of cancer recurrence, and may be used to determine therapy.