Surgery control tool for spinal correction rod

    公开(公告)号:AU2017412615A1

    公开(公告)日:2019-11-21

    申请号:AU2017412615

    申请日:2017-05-03

    Applicant: EOS IMAGING

    Abstract: This invention relates to a surgery control tool: being no patient implant, comprising: an elongated body (7, 37) having the shape and the size of a spinal correction rod, end contact parts (9, 39) being able to contact a patient implanted spinal correction rod implant (12, 13), spacers (8, 38) extending from said elongated body (7, 37) towards said end contact parts (9, 39).

    Method of preoperative planning to correct spine misalignment of a patient

    公开(公告)号:AU2015414802B2

    公开(公告)日:2020-12-24

    申请号:AU2015414802

    申请日:2015-11-19

    Applicant: EOS IMAGING

    Abstract: This invention relates to a method of preoperative planning to correct spine (1) misalignment of a patient, comprising a step of making a translation and a rotation, in a sagittal plane, of each vertebra (2) of a set of several cervical and/or thoracic (T1-T12) and/or lumbar (L1-L5) imaged spine vertebrae (2), so that said set of imaged vertebrae (2) presents afterwards, in the sagittal plane, the same cervical lordosis and/or the same thoracic kyphosis and/or the same lumbar lordosis as a model adapted for said patient, wherein it also comprises, before said step of making said translation and said rotation in a sagittal plane: a step of making a translation and a rotation, in a coronal plane, of each vertebra (2) of said set of several cervical and/or thoracic (T1-T12) and/or lumbar (L1-L5) imaged spine vertebrae (2), so that said set of imaged vertebrae (2) becomes straight in said coronal plane, and of making a rotation, in an axial plane, of each vertebra (2) of said set of several cervical and/or thoracic (T1-T12) and/or lumbar (L1-L5) imaged spine vertebrae (2), so that said set of imaged vertebrae (2) becomes axially aligned.

    Spinal correction rod implant manufacturing process part

    公开(公告)号:AU2017429385B2

    公开(公告)日:2024-06-13

    申请号:AU2017429385

    申请日:2017-09-01

    Abstract: A spinal correction rod implant manufacturing process part comprising: an estimation step (90) of a targeted spinal correction rod implant shape (3) which is based on a patient specific spine shape correction (2) and which includes a patient specific spine 3D modeling (91, 92), one or more simulation loops (60) each comprising: a first simulation step of an intermediate spinal correction rod implant shape (5) resulting from a modeling of a mechanical interaction (4) between said patient specific spine (1) and: either, for the first simulation loop, said targeted spinal correction rod implant shape (3), or, for subsequent simulation loop(s), if any, an overbent spinal correction rod implant shape (8) resulting from the previous simulation loop, a second simulation step of a spinal correction rod implant shape overbending (7) which is applied to said targeted spinal correction rod implant shape (3) to give a resulting overbent spinal correction rod implant shape (8) and which is representative of a difference between: either, for the first loop, said targeted spinal correction rod implant shape (3), or, for subsequent simulation loop(s), if any, said overbent spinal correction rod implant shape (8) resulting from the previous simulation loop, and said intermediate spinal correction rod implant shape (5).

    Radiological imaging method
    45.
    发明专利

    公开(公告)号:GB2604553A

    公开(公告)日:2022-09-07

    申请号:GB202208712

    申请日:2019-11-14

    Applicant: EOS IMAGING

    Abstract: This invention relates to a radiological imaging method comprising: 2 radiation sources with imaging directions orthogonal to each other, performing vertical scanning of a standing patient (20) along a vertical scanning fdirection (Z), wherein said radiological method comprises at least one operating mode in which: a frontal scout view is made so as to identify a specific bone(s) localization (21) within said frontal scout view, both driving current intensity and voltage intensity modulations (11) of said frontal radiation source, depending on patient thickness and on said identified specific bone(s) localization (21) along said vertical scanning direction (Z), are performed simultaneously, preferably synchronously, and automatically, so as to improve a compromise between: lowering the global radiation dose received by a patient (20) during said vertical scanning, and increasing the local image contrasts of said identified specific bone(s) localization (21) at different imaging positions along said vertical scanning direction (Z), for the frontal image.

    Radiological imaging method
    46.
    发明专利

    公开(公告)号:GB202208712D0

    公开(公告)日:2022-07-27

    申请号:GB202208712

    申请日:2019-11-14

    Applicant: EOS IMAGING

    Abstract: A radiological imaging method including 2 radiation sources with imaging directions orthogonal to each other, performing vertical scanning of a standing patient along a vertical scanning direction, wherein radiological method includes at least one operating mode in which: a frontal scout view is made so as to identify a specific bone(s) localization within the frontal scout view, driving current intensity modulation of the frontal radiation source, depending on patient thickness and on the identified specific bone(s) localization along the vertical scanning direction, is performed automatically, so as to improve a compromise between: lowering the global radiation dose received by a patient during the vertical scanning, while keeping at a sufficient level the local image contrasts of the identified specific bone(s) localization at different imaging positions along the vertical scanning direction, for the frontal image.

    Spinal correction rod implant manufacturing process part

    公开(公告)号:AU2017429385A1

    公开(公告)日:2020-03-19

    申请号:AU2017429385

    申请日:2017-09-01

    Abstract: A spinal correction rod implant manufacturing process part comprising: an estimation step (90) of a targeted spinal correction rod implant shape (3) which is based on a patient specific spine shape correction (2) and which includes a patient specific spine 3D modeling (91, 92), one or more simulation loops (60) each comprising: a first simulation step of an intermediate spinal correction rod implant shape (5) resulting from a modeling of a mechanical interaction (4) between said patient specific spine (1) and: either, for the first simulation loop, said targeted spinal correction rod implant shape (3), or, for subsequent simulation loop(s), if any, an overbent spinal correction rod implant shape (8) resulting from the previous simulation loop, a second simulation step of a spinal correction rod implant shape overbending (7) which is applied to said targeted spinal correction rod implant shape (3) to give a resulting overbent spinal correction rod implant shape (8) and which is representative of a difference between: either, for the first loop, said targeted spinal correction rod implant shape (3), or, for subsequent simulation loop(s), if any, said overbent spinal correction rod implant shape (8) resulting from the previous simulation loop, and said intermediate spinal correction rod implant shape (5).

    SPINAL CORRECTION ROD IMPLANT MANUFACTURING PROCESS PART

    公开(公告)号:CA3074340A1

    公开(公告)日:2019-03-07

    申请号:CA3074340

    申请日:2017-09-01

    Abstract: A spinal correction rod implant manufacturing process part comprising: an estimation step (90) of a targeted spinal correction rod implant shape (3) which is based on a patient specific spine shape correction (2) and which includes a patient specific spine 3D modeling (91, 92), one or more simulation loops (60) each comprising: a first simulation step of an intermediate spinal correction rod implant shape (5) resulting from a modeling of a mechanical interaction (4) between said patient specific spine (1) and: either, for the first simulation loop, said targeted spinal correction rod implant shape (3), or, for subsequent simulation loop(s), if any, an overbent spinal correction rod implant shape (8) resulting from the previous simulation loop, a second simulation step of a spinal correction rod implant shape overbending (7) which is applied to said targeted spinal correction rod implant shape (3) to give a resulting overbent spinal correction rod implant shape (8) and which is representative of a difference between: either, for the first loop, said targeted spinal correction rod implant shape (3), or, for subsequent simulation loop(s), if any, said overbent spinal correction rod implant shape (8) resulting from the previous simulation loop, and said intermediate spinal correction rod implant shape (5).

    Method of preoperative planning to correct spine misalignment of a patient

    公开(公告)号:AU2015414802A1

    公开(公告)日:2018-05-10

    申请号:AU2015414802

    申请日:2015-11-19

    Applicant: EOS IMAGING

    Abstract: This invention relates to a method of preoperative planning to correct spine (1) misalignment of a patient, comprising a step of making a translation and a rotation, in a sagittal plane, of each vertebra (2) of a set of several cervical and/or thoracic (T1-T12) and/or lumbar (L1-L5) imaged spine vertebrae (2), so that said set of imaged vertebrae (2) presents afterwards, in the sagittal plane, the same cervical lordosis and/or the same thoracic kyphosis and/or the same lumbar lordosis as a model adapted for said patient, wherein it also comprises, before said step of making said translation and said rotation in a sagittal plane: a step of making a translation and a rotation, in a coronal plane, of each vertebra (2) of said set of several cervical and/or thoracic (T1-T12) and/or lumbar (L1-L5) imaged spine vertebrae (2), so that said set of imaged vertebrae (2) becomes straight in said coronal plane, and of making a rotation, in an axial plane, of each vertebra (2) of said set of several cervical and/or thoracic (T1-T12) and/or lumbar (L1-L5) imaged spine vertebrae (2), so that said set of imaged vertebrae (2) becomes axially aligned.

Patent Agency Ranking