Abstract:
The invention relates to a catalytic reactor suited for exothermal reactions with a radial process fluid flow and process fluid flow guides which ensures an extended fluid flow path and higher flow velocity and thereby enhanced cooling of the catalyst bed in the reactor.
Abstract:
In sulphuric acid production by oxidation of SO 2 into SO 3 and subsequent hydration of SO 3 , from feed gases having a varying SO 2 concentration, the stability and thermal efficiency of the sulphuric acid plant can be increased by configuring the catalytic reaction zone to match the requirements for conversion. This can be done by appropriate flow and reactor configuration, such as by-passing one or more sections of catalytically active materials, or leading the feed gas through a limited catalytic reaction zone in the case of low SO 2 concentration. The associated benefits are catalytic reaction zones having fewer, smaller and more predictable temperature gradients compared to a plant in which the varying feed gas is directed through the same reaction zones. The invention also relates to a reactor for carrying out the process, and a sulphuric acid production process comprising the conversion process.
Abstract:
A diesel fuel composition comprising from about 70 to about 95 weight percent of dimethyl ether, up to about 20 weight percent of methanol, and from about 0.1 to about 20 weight % of water is disclosed.
Abstract:
The removal of sulphides from gas streams while using a solid absorbent containing tin, tin oxides or mixtures thereof and optionally a stabilizing component consisting of nickel, copper, cobalt, iron or oxides thereof takes place by contacting the sulphide-containing gas stream with the solid absorbent, which is expediently in the form of a carrier with the tin component and the stabilizing component; hereby the absorbent is sulphided and the gas stream desulphided. Subsequently the sulphided absorbents are regenerated by being contacted with a stream of steam. The regeneration process employed is substantially thermoneutral so that superheating and consequent sintering of the absorbent is avoided; moreover it is not necessary to operate at low temperatures, whereby the formation of sulphates as a by-product is avoided.
Abstract:
Combustible impurities in oxygen-containing offgases are burnt according to a method and by an apparatus of the type in which at least some of the heat of combustion is recovered by a regenerative heat exchange in two identical heat exchange zones (10, 11) containing a solid heat exchange material and separated by a combustion chamber (15). The air or gas to be purified flows through both of the heat exchange zones and by means of valves (1, 2, 3, 4) the direction of flow is changed periodically so that the two zones are alternately heated and cooled in periods of 0.1-60 minutes. The risk of discharge of unburnt combustible contaminants to the atmosphere is minimized by dividing the purified gas stream in the first 1-50 % of each period into two part streams of which one is discharged directly from the combustion chamber (15) to a recipient (22) whereas the other is passed through the heat exchange zone (10 or 11) being heated and from there recycled through a line (25 or 24) controlled by a valve (7 or 6) and combined with unpurified gas being passed to the heat exchange zone (11 or 10) being cooled.
Abstract:
When condensing sulfuric acid from gases containing sulfuric acid vapour and steam in excess, e.g. originating from a power station, a substantial decrease of the amount minute droplets of sulfuric acid (the so-called acid mist) escaping to the surroundings is obtained, even in cases where the sulfuric acid plant is equipped with an aerosol filter, if minute nucleation cores are incorporated into the gas in an amount of 10 to 10 solid particles per Nm per 0.1 % H2SO4-vapour in the gas. The nucleation cores may, e.g., be generated by combusting hydrocarbons with >2 carbon atoms or silicones, or added as smoke from an electric arc or welding.
Abstract:
Process for carbonylating a nitrogen-containing organic compound, selected from the group consisting of nitro, nitroso, azo, and azoxy compounds, by reacting said nitrogen-containing organic compound, with carbon monoxide, wherein the improvement comprises the step of : (a) reacting said nitrogen-containing compound with carbon monoxide, in the presence of a primary amine and a catalyst, essentially free of redox active metal components selected from the group consisting of rhodium and ruthenium.
Abstract:
A process for the preparation of hydrocarbon products comprising the steps of (a) providing a synthesis gas comprising hydrogen, carbon monoxide and carbon dioxide; (b) reacting the synthesis gas to an oxygenate mixture comprising methanol and dimethyl ether in presence of one or more catalysts which together catalyse a reaction of hydrogen and carbon monoxide to oxygenates at a pressure of at least 4 MPa; (c) withdrawing from step (b) the oxygenate mixture comprising amounts of methanol, dimethyl ether, carbon dioxide and water together with unreacted synthesis gas and introducing the entire amount of the oxygenate mixture without further treatment into a catalytic oxygenate conversion step (d); (d) reacting the oxygenate mixture in presence of a catalyst being active in the conversion of oxygenates to higher hydrocarbons; (e) withdrawing an effluent from step (d) and separating the effluent into a tail gas, a liquid hydrocarbon phase containing the higher hydrocarbons produced in step.(d) and a liquid aqueous phase, wherein the pressure employed in steps (c) to (e) is substantially the same as employed in step (b).
Abstract:
A process for a reduction in the amount of sulphur compounds, hydrogen cyanide, formic acid and formic acid derivatives in synthesis gas comprising these compounds, the process comprising contacting the synthesis gas with a sulphur absorbent comprising material and thereafter with a catalyst comprising one or more metals selected from the group consisting of silver, gold, copper, palladium, platinum and their mixtures and supported on a carrier comprising at least one of the oxides of scandium, yttrium, lanthanum, cerium, titanium, zirconium, aluminium, zinc, chromium and molybdenum.
Abstract:
A hydrocarbon conversion catalyst comprising a modified beta zeolite, an amorphous inorganic oxide and a hydrogenation component wherein the said catalyst support has an NH 3 -AI of less than 3.5 and/or an IEC-AI of less than 3.7.