Abstract:
Disclosed herein are methods for recovering diphosphite-containing compounds from mixtures comprising organic mononitriles and organic dinitriles, using liquid-liquid extraction. Also disclosed are pre-treatments to enhance extractability of the diphosphite-containing compounds.
Abstract:
This invention relates to low-tack thin-walled articles comprising a polyurethane elastomer, for example surgical gloves, clean-room gloves, condoms, and the like. More particularly, the invention relates to such elastomeric articles containing specific amounts of molecular sieve.
Abstract:
An elastic multiple component fiber comprising a cross-section, wherein at least a first region of said cross-section comprises a polyurethaneurea composition; and comprising a second region.
Abstract:
Disclosed herein are stretchable elastic fabrics prepared by substantially uniformly impregnating a consolidated warp knit fabric with an elastomeric polymer by treatment with an elastomeric polymer solution. The resulting fabrics exhibit considerable elongation in the cross-direction with little or no machine-direction elongation. Such stretchable elastic fabrics are useful in medical and personal hygiene articles as well as in apparel applications.
Abstract:
Disclosed herein are articles and processes for making elastic composite structures which can be used as or converted into a component of disposable hygiene products or articles of apparel. At least one relatively inelastic substrate, for example a nonwoven substrate, is adhesively bonded with a hot melt adhesive to a certain selected type of elongated polyurethane material in the form of a film or one or more fibers or filaments. The elongated polyurethane material is then allowed to relax which provides an elastic composite structure which is gathered or puckered.
Abstract:
Articles comprising multiple layers are included. The multiple layer articles may include fabrics, foams, films, fiber in combination with a polyolefin composition such as a film, powder, or nonwoven.
Abstract:
This document describes biochemical pathways for producing 2(E)-heptenedioyl-CoA methyl ester from precursors such as 2-oxo-glutarate, acetyl-CoA, or succinyl-CoA using one or more of a fatty acid O-methyltransferase, a thioesterase, a CoA-transferase, a CoA ligase, as well as recombinant hosts expressing one or more of such enzymes. 2(E)-heptenedioyl-CoA methyl ester can be enzymatically converted to pimeloyl-CoA using a trans-2-enoyl-CoA reductase, and a methylesterase. Pimeloyl-CoA can be enzymatically converted to pimelic acid, 7-aminoheptanoate, 7-hydroxyheptanoate, heptamethylenediamine, or 1,7-heptanediol.