Abstract:
Provided herein is a device comprising a stent and a coating on the stent; wherein the coating comprises at least one polymer and at least one active agent; wherein at least part of the active agent is in crystalline form.
Abstract:
A composite article, in an exemplary embodiment, includes a porous membrane formed from a first material, a coating formed from a second material applied to at least a portion of the porous membrane, and a third material covering at least a portion of the porous membrane. The third material is substantially incompatible with the first material. The second material of the coating is compatible with the first material and the third material. The coating is positioned between the first material and the third material The third material is connected to the first material by the coating on the porous membrane.
Abstract:
A method of making a composite membrane with ion exchange properties includes, in an exemplary embodiment, forming a porous membrane from a first material, dissolving a coating material in a fluid at supercritical conditions, and exposing the porous membrane to the coating material dissolved in the supercritical fluid. The method also includes precipitating a uniform coating of the coating material onto an exterior surface of the porous membrane by changing the supercritical conditions of the fluid to a non-supercritical condition, and applying an ion exchange material to the coated porous membrane so that the ion exchange material is in intimate contact with substantially all of the coated surfaces of the porous membrane.
Abstract:
A stent holder for mounting and electrically charging a stent during coating of the stent using dry particles, the particles comprising inert polymers, pharmaceutical or biological agents, is provided. An assembly for supporting and electrically charging a stent during the coating of the stent using dry particles, the particles comprising inert polymers, pharmaceutical or biological agents, is provided. A chamber for creating an electrical field around a stent and for supporting, electrically charging, and exposing the stent to dry particles, the particles comprising inert polymers, pharmaceutical or biological agents, is provided. A method for creating an electrical field around a stent and for supporting, electrically charging, and exposing the stent to dry particles comprising inert polymers, pharmaceutical or biological agents is provided.
Abstract:
A method of utilizing a divided pressure vessel in a processing system employing a carbon dioxide based solvent includes transferring a first carbon dioxide based treating solution from a first liquid chamber in a divided pressure vessel having a plurality of liquid chambers to a processing vessel, returning the first treating solution from the processing vessel to the divided pressure vessel, transferring a second carbon dioxide based treating solution having a composition different from the first treating solution from a second liquid chamber in the divided pressure vessel to a processing vessel, and returning the second treating solution from the processing vessel to the divided pressure vessel. A divided pressure vessel may allow multiple solvent baths each having a different chemical composition to be stored and/or processed in a single pressure vessel while maintaining the different chemical compositions of the multiple solvent baths. Thus, such divided pressure vessels may provide the improved operational efficiency of a carbon dioxide based system having multiple solvent baths while decreasing the capital costs that may be associated with such systems.
Abstract:
Methods for cleaning a microelectronic substrate in a cluster tool are described that include placing the substrate in a pressure chamber of a module in a cluster tool; pressurizing the pressure chamber; introducing liquid CO2 into the pressure chamber; cleaning the substrate in the pressure chamber; removing the liquid CO2 from the pressure chamber, depressurizing the pressure chamber, and removing the substrate from the pressure chamber. Apparatus for processing a microelectronic substrate are also disclosed that that include a transfer module, a first processing module that employs liquid carbon dioxide as a cleaning fluid coupled to the transfer module, a second processing module coupled to the transfer module, and a transfer mechanism coupled to the transfer module. The transfer mechanism is configured to move the substrate between the first processing module and the second processing module.
Abstract:
A method for carrying out a catalysis reaction in carbon dioxide comprising contacting a fluid mixture with a catalyst bound to a polymer, the fluid mixture comprising at least one reactant and carbon dioxide, wherein the reactant interacts with the catalyst to form a reaction product. A composition of matter comprises carbon dioxide and a polymer and a reactant present in the carbon dioxide. The polymer has bound thereto a catalyst at a plurality of chains along the length of the polymer, and wherein the reactant interacts with the catalyst to form a reaction product.
Abstract:
Methods and apparatus for chemical mechanical planarization of an article such as a semiconductor wafer use polishing slurries including a carbon dioxide solvent or a carbon dioxide-philic composition. A carbon dioxide cleaning solvent step and apparatus may also be employed.
Abstract:
A method of utilizing a divided pressure vessel in a processing system employing a carbon dioxide based solvent includes transferring a first carbon dioxide based treating solution from a first liquid chamber in a divided pressure vessel having a plurality of liquid chambers to a processing vessel, returning the first treating solution from the processing vessel to the divided pressure vessel, transferring a second carbon dioxide based treating solution having a composition different from the first treating solution from a second liquid chamber in the divided pressure vessel to a processing vessel, and returning the second treating solution from the processing vessel to the divided pressure vessel. A divided pressure vessel may allow multiple solvent baths each having a different chemical composition to be stored and/or processed in a single pressure vessel while maintaining the different chemical compositions of the multiple solvent baths. Thus, such divided pressure vessels may provide the improved operational efficiency of a carbon dioxide based system having multiple solvent baths while decreasing the capital costs that may be associated with such systems.
Abstract:
A method for conserving carbon dioxide vapor in a carbon dioxide dry cleaning system employing a liquid carbon dioxide cleaning solution to clean articles, where the method includes removing carbon dioxide vapor from a wash tank to a vapor tank, storing the carbon dioxide vapor in the vapor tank; and charging the wash tank with carbon dioxide vapor from the vapor tank. The method may be performed as part of a wash cycle that includes filling the wash tank with cleaning solution, washing articles to be cleaned in the wash tank, and emptying the cleaning solution out of the wash tank. An apparatus may also be employed for conserving carbon dioxide vapor in a carbon dioxide dry cleaning system employing a liquid carbon dioxide cleaning solution to clean articles, where the apparatus includes a wash tank for contacting the articles to be cleaned with the liquid carbon dioxide cleaning solution, a working tank for storing liquid carbon dioxide cleaning solution, a vapor tank for storing carbon dioxide vapor, a first piping system providing fluid communication between the wash tank and the vapor tank, where the first piping system includes a first line and a first valve residing in the first line, and a second piping system providing fluid communication between the working tank and the wash tank. Methods and apparatus for collecting liquid carbon dioxide in a collecting tank are also provided.