Abstract:
Ein Infrarotlichtdetektor weist mindestens einen Sensorchip (3, 4), der ein aus einem pyroelektrisch sensitiven Material hergestelltes Schichtelement (5, 8) sowie eine Basiselektrode (6, 9) und eine Kopfelektrode (7, 10) aufweist, an die das Schichtelement (5, 8) zum Abgreifen von in dem Schichtelement (5, 8) durch deren Bestrahlung mit Licht (2) erzeugten elektrischen Signalen angeschlossen ist, und einen Transimpedanzverstärker (11, 12) zum Verstärken der Signale mit einem Operationsverstärker (19, 25) auf, der mit einer Versorgungsspannungsquelle (13) mit einer positiven Versorgungsspannung asymmetrisch betrieben sind und an dessen invertierenden Eingang (21, 27) die Basiselektrode (6, 9) angeschlossen ist, wobei an der Versorgungsspannungsquelle (13) ein auf Masse (14) gelegter Spannungsteiler (15) mit einem Teilknoten (18) versehen ist, an dem eine Teilspannung anliegt, die kleiner als die Versorgungsspannung ist, und der mit dem nichtinvertierenden Eingang (20, 26) sowie der Kopfelektrode (7, 10) elektrisch gekoppelt ist.
Abstract:
Die Erfindung betrifft eine Vorrichtung (1) zur Detektion von Wärmestrahlung, aufweisend einen Stapel (10) mit mindestens einem Detektorträger (11) mit mindestens einem thermischen Detektorelement (111) zur Umwandlung der Wärmestrahlung in ein elektrisches Signal, mindestens einem Schaltungsträger (12) mit mindestens einer Ausleseschaltung (121, 122) zum Auslesen des elektrischen Signals, und mindestens einer Abdeckung (13) zum Abdecken des Detektorelements, wobei der Detektorträger und die Abdeckung derart aneinander angeordnet sind, dass zwischen dem Detektorelement des Detektorträgers und der Abdeckung mindestens ein, vom Detektorträger und von der Abdeckung begrenzter, erster Stapelhohlraum (14) des Stapels vorhanden ist, der Schaltungsträger und der Detektorträger derart aneinander angeordnet sind, dass zwischen dem Detektorträger und dem Schaltungsträger mindestens ein, vom Schaltungsträger und vom Detektorträger begrenzter, zweiter Stapelhohlraum (15) des Stapels vorhanden ist und der erste Stapelhohlraum und/oder der zweite Stapelhohlraum evakuiert oder evakuierbar sind. Daneben wird ein Verfahren zum Herstellen der Vorrichtung angegeben. Detektorträger, Schaltungsträger und Abdeckung sind vorzugsweise aus Silizium. Das Herstellen erfolgt auf Wafer-Ebene: Es werden funktionalisierte Silizium-Substrate übereinander gestapelt, fest miteinander verbunden und anschließend vereinzelt. Vorzugsweise sind die Detektorelemente pyroelektrische Detektorelemente. Verwendung findet die Vorrichtung in Bewegungsmeldern, Präsenzmeldern und Wärmebildkameras.
Abstract:
The invention relates to an ATR spectrometer for analysing the chemical composition of a sample, wherein the ATR spectrometer (1) comprises an ATR crystal (2), at least one infrared light source (5) being arranged on the entry surface (3), a line array (6) of infrared light detectors, at least one single infrared light detector (7), wherein the at least one infrared light source (5) is adapted to emit infrared light that enters the ATR crystal and is guided to the infrared light detectors under total internal reflection and under interaction with the sample being arranged immediately adjacent to the ATR crystal, a wavelength dispersive element (8) being arranged in the path of the infrared light so—that the line array is adapted to measure a spectrum of the infrared light, and a wavelength filter (9) being arranged in the path of the infrared light to the single infrared light detector, wherein at least one of the infrared light detectors is chosen to be a chosen infrared light detector for a signal correction, and the ATR spectrometer is adapted to use the electrical signal of the chosen infrared light detectors to correct the electrical signals of all the other infrared light detectors.
Abstract:
The invention relates to an ATR spectrometer for analysing the chemical composition of a sample, wherein the ATR spectrometer (1) comprises an ATR crystal (2), at least one infrared light source (5) being arranged on the entry surface (3), a line array (6) of infrared light detectors, at least one single infrared light detector (7), wherein the at least one infrared light source (5) is adapted to emit infrared light that enters the ATR crystal and is guided to the infrared light detectors under total internal reflection and under interaction with the sample being arranged immediately adjacent to the ATR crystal, a wavelength dispersive element (8) being arranged in the path of the infrared light so—that the line array is adapted to measure a spectrum of the infrared light, and a wavelength filter (9) being arranged in the path of the infrared light to the single infrared light detector, wherein at least one of the infrared light detectors is chosen to be a chosen infrared light detector for a signal correction, and the ATR spectrometer is adapted to use the electrical signal of the chosen infrared light detectors to correct the electrical signals of all the other infrared light detectors.
Abstract:
An ATR infrared spectrometer for analyzing a chemical composition of a sample is provided including an elongated ATR crystal and having an entrance face, a longitudinal axis, a width, first and second longitudinal ends and an infrared light detector line with infrared-light-detecting regions. A first overall extent of all of the infrared-light-detecting regions corresponds to the width of ATR crystal. An infrared light emitter line has infrared-light-emitting regions and is arranged directly adjacent to the entrance face of the elongated ATR crystal. A sample is arranged adjacent to the ATR crystal between the infrared light emitter line and the infrared light detector line. Infrared light is emitted by the infrared light emitter line to directly enter said ATR crystal via said entrance face. The light is guided in the ATR crystal to said infrared light detector line thereby undergoing total internal reflection and thereby interacting with said sample.
Abstract:
A switch operating device (100) configured to operate a switch (103) with four possible types (111 to 114) of non-tactile translational gestures performed with a heat emitting part (115). A gesture sensor (1) is adapted to detect heat emitted by the part while performing one of the translational gesture types. Four pixels (21 to 24) are arranged next to each other and output a signal (51 to 54) per pixel, wherein the signal has a signal deflection (58) corresponding to the temporal intensity curve of the heat detected by the thin film of the corresponding pixel. A signal processing unit (101) determines the performance of the translational gesture types from the temporal succession of the signal deflections (58). An actuator (104) is controlled by the signal processing unit and operates the switch when one of the translational gesture types is determined.
Abstract:
A sensor system for detecting motion in a predefined direction of motion (30) of an infrared light source (29) has at least one pair of infrared light sensors (4, 5; 36, 37), which are arranged side by side with respect to the direction of motion (30) and, thus, define a sensor coverage zone (17) determined by the distance between distal ends (16) (with respect to the direction of motion) of the infrared light sensors. During exposure to the infrared light source, the sensors provide electrical signals, the charge signs of which are opposite each other, for detecting the motion of the infrared light source (29). The sensor system (1) has a window (7) positioned between the infrared light source (29) and the sensors such that the infrared light of the infrared light source (29) radiates onto the sensors. The sensors are arranged behind the window and are adjusted relative to the width (41) of the window to extend in the direction of motion such that, beyond a predetermined limit distance (20) away from the window, each of the sensors has a full illumination zone (22, 23), which defines the locations from which the infrared light source (29) fully illuminates only one of the sensors (4, 36 or 5, 37). The full illumination zones (22, 23) do not spatially overlap beyond the limit distance (20); and the window width (41) is smaller than the sensor coverage zone (17) in the direction of motion (30).
Abstract:
Switch operating device (100) with: a presence sensor operating a switch (103) in response to presence of a heat emitting part. The presence has an approach phase (31) during which the part approaches the presence sensor, a remaining phase during which the part remains proximate to the sensor, and a withdrawal phase (41) during which the part is moved away from the sensor. The sensor detects heat emitted by the part with at least one pixel and outputs a signal (51 to 54) with signal deflections (56, 57) corresponding to a temporal intensity curve of heat detected by the pixel. A signal processing unit (101) determines the approach and withdrawal phases from the temporal succession and the shape of the signal deflections. An actuator (104) is controlled by the signal processing unit and operates the switch when the approach phase, the remaining phase and/or the withdrawal phase is determined.
Abstract:
A sensor system for detecting motion in a predefined direction of motion (30) of an infrared light source (29) has at least one pair of infrared light sensors (4, 5; 36, 37), which are arranged side by side with respect to the direction of motion (30) and, thus, define a sensor coverage zone (17) determined by the distance between distal ends (16) (with respect to the direction of motion) of the infrared light sensors. During exposure to the infrared light source, the sensors provide electrical signals, the charge signs of which are opposite each other, for detecting the motion of the infrared light source (29). The sensor system (1) has a window (7) positioned between the infrared light source (29) and the sensors such that the infrared light of the infrared light source (29) radiates onto the sensors. The sensors are arranged behind the window and are adjusted relative to the width (41) of the window to extend in the direction of motion such that, beyond a predetermined limit distance (20) away from the window, each of the sensors has a full illumination zone (22, 23), which defines the locations from which the infrared light source (29) fully illuminates only one of the sensors (4, 36 or 5, 37). The full illumination zones (22, 23) do not spatially overlap beyond the limit distance (20); and the window width (41) is smaller than the sensor coverage zone (17) in the direction of motion (30).
Abstract:
Switch operating device (100) with: a presence sensor operating a switch (103) in response to presence of a heat emitting part. The presence has an approach phase (31) during which the part approaches the presence sensor, a remaining phase during which the part remains proximate to the sensor, and a withdrawal phase (41) during which the part is moved away from the sensor. The sensor detects heat emitted by the part with at least one pixel and outputs a signal (51 to 54) with signal deflections (56, 57) corresponding to a temporal intensity curve of heat detected by the pixel. A signal processing unit (101) determines the approach and withdrawal phases from the temporal succession and the shape of the signal deflections. An actuator (104) is controlled by the signal processing unit and operates the switch when the approach phase, the remaining phase and/or the withdrawal phase is determined.