Abstract:
A method and system for non-invasive sensing and monitoring of a processing system (100, 200) employed in semiconductor manufacturing. The method allows for detecting and diagnosing drift and failures in the processing system (100, 200) and taking the appropriate correcting measures. The method includes positioning at least one non-invasive sensor (247a-d, 248a-b, 249a-b, 250a-c, 906) on an outer surface of a system component of the processing system (200), where the at least one invasive sensor forms a wireless sensor network (902), acquiring a sensor signal from the at least one non-invasive sensor (247a-d, 248a-b, 249a-b, 250a-c, 906), where the sensor signal tracks a gradual or abrupt change in a processing state of the system component during flow of a process gas in contact with the system component, and extracting the sensor signal from the wireless sensor network (902) to store and process the sensor signal. In one embodiment, the non-invasive sensor (247a-d, 248a-b, 249a-b, 250a-c, 906) can be an accelerometer sensor and the wireless sensor network (902) can be motes-based.
Abstract:
A method of integrated processing of a patterned substrate (400, 600) for copper metallization. The method includes providing the patterned substrate (400, 600) containing a via (426, 626) and a trench (424, 624) in a vacuum processing tool (300), and performing an integrated process on the patterned substrate (400, 600) in the vacuum processing tool (300) by depositing a first metal-containing layer (428, 628) over the patterned substrate (400, 600), removing by sputter etching the first metal-containing layer (428, 628) from the bottom (426b, 626b) of the via (426, 626) and at least partially removing the first metal-containing layer (428, 628) from the bottom (424b, 624b) of the trench (424,624), depositing a conformal Ru layer (432, 632) onto the sputter etched first metal-containing layer (428a, 628a), depositing a non-conformal Cu layer (434,634) on the conformal Ru layer (432), and plating Cu (436, 636) over the patterned substrate (400, 600). According to one embodiment of the invention, the method can further include depositing a second metal-containing layer (430) onto the sputter etched first metal-containing layer (428a) prior to depositing the conformal Ru layer (432).
Abstract:
A method is provided for in-situ formation of a thin oxidized AlN film on a substrate. The method includes providing the substrate in a process chamber (10), depositing an AfN film on the substrate (40), and post-treating the AIN film with exposure to a nitrogen and oxygen-containing gas. The post-treating increases the dielectric constant of the AIN film with substantially no increase in the AIN film thickness. The method can also include pre-treating the substrate (40) prior to AIN deposition, post-anneaiing the AIN film before or after the post-treatment, or both.
Abstract:
An iPVD system (200A) is programmed to deposit a barrier and/or seed layer (10) using a Ru-containing material into high aspect ratio nano-size features on semiconductor substrates (12, 211 ) using a process which enhances the sidewalÊ (16) coverage compared to the field and bottom (15) coverage(s) while minimizing or eliminating overhang within an IPVD processing chamber (220). In the preferred embodiment, an IPVD apparatus having a frusto-conical ruthenium target (225) equipped with a high density ICP source is provided.
Abstract:
A method is provided for depositing a gate dielectric that includes at least two rare earth metal elements in the form of a nitride or an aluminum nitride. The method includes disposing a substrate (25, 92) in a process chamber (10) and exposing the substrate (25, 92) to a gas pulse containing a first rare earth precursor and to a gas pulse containing a second rare earth precursor. The substrate (25, 92) may also optionally be exposed to a gas pulse containing an aluminum precursor. Sequentially after each precursor gas pulse, the substrate (25, 92) is exposed to a gas pulse of a nitrogen-containing gas. In alternative embodiments, the first and second rare earth precursors may be pulsed together, and either or both may be pulsed together with the aluminum precursor. The first and second rare earth precursors comprise a different rare earth metal element. The sequential exposing steps may be repeated to deposit a mixed rare earth nitride or aluminum nitride layer (96) with a desired thickness. Purge or evacuation steps may also be performed after each gas pulse.
Abstract:
A semiconductor device (90, 91), such as a transistor or capacitor, is provided. The device (90, 91) includes a substrate (25, 92), a gate dielectric (96) over the substrate (25, 92), and a conductive gate electrode film (98) over the gate dielectric (96). The gate dielectric (96) includes a mixed rare earth oxide, nitride or oxynitride film containing at least two different rare earth metal elements.
Abstract:
A system for introducing a precursor vapor to a processing chamber (10, 110) configured for forming a thin metal on a substrate (25, 125) is described. The vapor delivery system includes means for introducing a dilution gas to the precursor vapor and adjusting the spatial distribution of the dilution gas addition in order to affect improvements to the properties of the deposited film.
Abstract:
A method is provided for depositing a gate dielectric that includes at least two rare earth metal elements in the form of an oxide or an aluminate. The method includes disposing a substrate (25, 92) in a process chamber (10) and exposing the substrate (25, 92) to a gas pulse containing a first rare earth precursor and to a gas pulse containing a second rare earth precursor. The substrate (25, 92) may also optionally be exposed to a gas pulse containing an aluminum precursor. Sequentially after each precursor gas pulse, the substrate (25, 92) is exposed to a gas pulse of an oxygen-containing gas. In alternative embodiments, the first and second rare earth precursors may be pulsed together, and either or both may be pulsed together with the aluminum precursor. The first and second rare earth precursors comprise a different rare earth metal element. The sequential exposing steps may be repeated to deposit a mixed rare earth oxide or aluminate layer (96) with a desired thickness. Purge or evacuation steps may also be performed after each gas pulse.
Abstract:
A method and system for non-invasive sensing and monitoring of a processing system (100, 200) employed in semiconductor manufacturing. The method allows for detecting and diagnosing drift and failures in the processing system (100, 200) and taking the appropriate correcting measures. The method includes positioning at least one non-invasive sensor (247a-d, 248a-b, 249a-b, 250a-c, 906) on an outer surface of a system component of the processing system (200), where the at least one non- invasive sensor forms a wireless sensor network (902), acquiring a sensor signal from the at least one non-invasive sensor (247a-d, 248a-b, 249a-b, 250a-c, 906), where the sensor signal tracks a gradual or abrupt change in a processing state of the system component during flow of a process gas in contact with the system component, and extracting the sensor signal from the wireless sensor network (902) to store and process the sensor signal. In one embodiment, the non-invasive sensor (247a-d, 248a-b, 249a-b, 250a-c, 906) can be an accelerometer sensor and the wireless sensor network (902) can be motes-based.
Abstract:
An iPVD system (200A, 200B) is programmed to deposit uniform material (115, 120), such as a metallic material, into high aspect ratio nano-sized features (110) on semiconductor substrates (105) using a process that enhances the feature filling (130C) compared to the field deposition (106), while maximizing the size of the grain features in the deposited material opening (140) at the top of the feature during the process. Sequential deposition and etching are provided by controlling DC and high density power levels and other parameters.