Abstract:
A method for forming a semiconductor device with improved electromigration (EM) and stress migration (SM) properties. The method includes providing a planarized patterned substrate containing a copper (Cu) metal surface and a low-k dielectric layer surface, selectively depositing a metal cap layer on the Cu metal surface, and modifying the metal cap layer by exposing the metal cap layer to a process gas containing ammonia (NH3) gas without plasma excitation. The method further includes forming a dielectric barrier film on the modified metal cap layer and on the dielectric layer surface, and exposing the dielectric barrier film to a gaseous oxidizing environment, where the dielectric barrier film and the modified metal cap layer prevent oxidation of the Cu metal surface when the dielectric barrier film is exposed to the gaseous oxidizing environment.
Abstract:
A method of patterning a gate structure (100, 100', 200) on a substrate (25, 105, 210) is described. The method includes preparing a metal gate structure (100, 100', 200) on a substrate (25, 105, 210), wherein the metal gate structure (100, 100', 200) includes a high dielectric constant (high-k) layer (230), a first gate layer (120, 240) formed on the high-k layer (230), and a second gate layer (130, 250) formed on the first gate layer (120, 240), and wherein the first gate layer (120, 240) comprises one or more metal-containing layers (240A, 240B). The method further includes preparing a mask layer (260, 270) with a pattern overlying the metal gate structure (100, 100', 200), transferring the pattern to the second gate layer (130, 250), transferring the pattern to the first gate layer (120, 240), and transferring the pattern in the first gate layer (120, 240) to the high-k layer (230), and prior to the transferring of the pattern to the high-k layer (230), passivating an exposed surface (245) of the first gate layer (120, 240) using a nitrogen-containing and/or carbon-containing environment to reduce under-cutting (140, 140') of the first gate layer (120, 240) relative to the second gate layer (130, 250), wherein the passivating is performed separately from or in addition to the transferring of the pattern to the first gate layer (120, 240).
Abstract:
A method of patterning a substrate (110) is described. The method includes preparing a film stack on a substrate (110), wherein the film stack comprises a spin-on layer (120), and heating the spin-on layer (120) to a cure temperature less than a thermal decomposition temperature of the spin-on layer (120) and exceeding about 200 degrees C to increase mechanical strength of the spin-on layer (120). The method further includes forming a feature pattern (105) without pattern collapse in the spin-on layer (120), wherein the feature pattern (105) is characterized by a critical dimension (155) less than 35nm (nanometers) and an aspect ratio relating a height (150) of the feature pattern (1 05) to the critical dimension (155) exceeding 5:1.
Abstract:
A method of patterning an insulation layer is described. The method includes preparing a film stack on a substrate, wherein the film stack comprises a cap layer, a SiCOH-containing layer overlying the cap layer, and a hard mask overlying the SiCOH-containing layer. The method further includes transferring a pattern through the film stack by performing a series of etch processes in a plasma etching system, wherein the series of etch processes utilize a temperature controlled substrate holder in the plasma etching system according to a substrate temperature control scheme that achieves etch selectivity between the SiCOH-containing layer and the underlying cap layer.
Abstract:
A method for introducing a precursor vapor to a processing chamber (10, 110) configured for forming a thin metal on a substrate (25, 125) is described. The vapor delivery method includes introducing a dilution gas to the precursor vapor and adjusting the spatial distribution of the dilution gas addition in order to affect improvements to the properties of the deposited film.
Abstract:
Embodiments of a gas cluster ion beam apparatus (100) and methods for forming a gas cluster ion beam (128) using a low-pressure process source (535) are generally described herein. In one embodiment, the low-pressure process source (535) is mixed with a high-pressure diluent source (512) in a static pump (500) to form a mixed source, from which a gas cluster jet (118) is generated and ionized to form the gas cluster ion beam. Other embodiments may be described and claimed.
Abstract:
Control of radial or non-radial temperature distribution is controlled across a substrate during processing to compensate for non-uniform effects, including non-uniformities arising from system or process. Temperature is controlled, preferably dynamically, by flowing backside gas differently across different areas on a wafer supporting chuck (substrate support table 20, 20a) to vary heat conduction across the wafer. Ports (26, 26a) in the support table (20, 20a) are grouped, and gas to or from the groups is separately controlled by different valves (32) responsive to a controller (35) that controls gas pressure in each of the areas to spatially and preferably dynamically control wafer temperature to compensate for system and process non-uniformities. Wafer deformation is affected by separately controlling the pressure of the backside gas at different ports (26, 26a) to control the local force exerted on the backside of the substrate, by separately dynamically controlling valves (32) affecting gas flow to a port (26, 26a) and ports (26, 26a) surrounding said port (26, 26a).
Abstract:
Embodiments of apparatus (100) and methods for performing high throughput non-plasma processing are generally described herein. Other embodiments may be described and claimed.
Abstract:
A processing system (1, 504B) and method for integrated substrate processing in a substrate processing tool (500). The processing system (1, 504B) contains a substrate holder (20) configured for supporting and controlling the temperature of the substrate (25), a hot filament hydrogen radical source (31 ) for generating hydrogen radicals, and a controller (70, 510) configured for controlling the processing system (1, 504B). The hot filament hydrogen radical source (31 ) includes a showerhead assembly (30) containing an internal volume (37) and a showerhead plate (35) having gas passages (33) facing the substrate (25) for exposing the substrate (25) to the hydrogen radicals, and at least one meta! wire filament (59, 59a, 59b, 59c) within the interna! volume (37) to thermaliy dissociate H2 gas into the hydrogen radicals. The integrated process includes pretreating exposed surfaces of an etch feature (105) in a dielectric film (113, 115, 624, 626) and an exposed metal interconnect pattern (111 A, 622A) formed underneath the etch feature (105) with a flow of hydrogen radicals generated by thermal decomposition of H2 gas by a hot filament hydrogen radical source (31 ) separated from the substrate (25) by a showerhead plate (35) containing gas passages (33) facing the substrate (25). The integrated process further includes depositing a barrier metal film (116, 628) over the pretreated exposed surfaces, and forming a Cu metal film (113) on the barrier metal film (116, 628).
Abstract:
A method and system (100, 200) is described for treating a substrate (105, 205) with a high pressure fluid, such as carbon dioxide in a supercritical state. A process chemistry containing a process peroxide is introduced to the high pressure fluid for treating the substrate surface. The peroxide-based chemistry is used in conjunction with an initiator, wherein the initiator facilitates the formation of a radical of the process peroxide.