Abstract:
In various embodiments, systems and methods are provided for a wireless device to acquire a wireless channel in wireless communication system. In an embodiment, the wireless device obtains a first wireless communication channel to operate on a first wireless network from a first wireless channel table where the first wireless communication channel is associated with a geographic identifier. The wireless device saves the geographic identifier and obtains a second wireless communication channel to operate on a second wireless network from a second wireless channel table using the geographic identifier where the second wireless communication channel is associated with the geographic identifier.
Abstract:
One or more computer readable media, that enable a method for remotely activating one or more communication-forwarding functions for a mobile-communication device are provided. The present invention allows a forwarding service operated by a provider of mobile communication services and a forwarding application that runs on a mobile communication device to be remotely activated by a user that does not have possession of the mobile communication device. The mobile communication device receives an activation message with instructions to automatically activate a communication-forwarding function. In response to the activation message the mobile communication device activates the requested communication-forwarding function in conformity with the instructions in the activation message. The activation message is generated and sent by an activation-message generator.
Abstract:
An electrophoretic display (EPD) device and a method of manufacturing the EPD are disclosed. An EPD device includes a first substrate, a second substrate, and an electrophoretic layer. The first substrate includes a plurality of pixel areas, and each pixel area includes a first electrode. The second substrate faces the first substrate and includes a second electrode to form an electric field with the first electrode and a color filter corresponding to the first electrode. The electrophoretic layer is disposed between the first substrate and the second substrate and is controlled by an electric field formed by the first electrode and the second electrode to display an image. An end portion of the color filter extends beyond an end portion of the first electrode.
Abstract:
A system and method for managing bandwidth used by videos in a wireless telecommunications network is provided. In one embodiment, the videos originate at mobile devices generating videos of a single event such as a concert, sporting event, graduation, or other event attended by multiple users. The mobile devices may communicate the videos to social networking websites where the videos may be viewed by multiple users. Embodiments of the present invention conserve bandwidth by selecting one or more of the videos of the single event to send to each of the destinations specified by all of the videos capturing the event. An instruction is then sent to each of the mobile devices generating nonselected video streams to discontinue transmission of the video streams.
Abstract:
Systems, methods, and computer-readable media for improving user navigation of a multi-page article on a small screen user device. In embodiments, as a user progresses through the multi-page article, pages and/or lines of text of the multi-page article are cached. In response to a user request to view the multi-page article in a full-page format, the cached content is compared against text of the full-page document and used to determine a presentation of the text that displays nonduplicative content to the user.
Abstract:
A display apparatus according to an embodiment includes a first substrate including a plastic material, a second substrate facing the first substrate, and a coating layer formed on at least one surface of the first substrate. The coating layer includes a first compound having an acryl-based monomer and a second compound having a silicon derivative, and prevents reflection of light from the first substrate when light is provided to the first substrate. Thus, the display apparatus may have enhanced lightness (brightness) thereby improving the display quality.
Abstract:
A touch screen display device includes a common electrode, a base substrate disposed opposite to the common electrode, a display signal line formed on the base substrate, a plurality of pixel electrodes, a touch position sensing part formed between the base substrate and the pixel electrodes, the touch position sensing part sensing a change of electrostatic capacitance formed between the common electrode and the touch position sensing part, and a display layer disposed between the common electrode and the pixel electrodes. The display layer includes a plurality of micro capsules comprising positively charged pigment particles and negatively charged pigment particles.
Abstract:
An electrophoretic display device having improved frontal reflectance includes a first substrate including a first electrode of a transparent material having a first optical pattern, a second substrate opposing the first substrate and including a plurality of second electrodes, a spacer interposed between the first and second substrates to define a space between the first and second substrates, and a image display layer formed in the space formed by the first and second substrates and the spacer to display an image by an electric field generated between the first and second electrodes.
Abstract:
Disclosed are an apparatus having a planarized substrate and a method of manufacturing the same. A coating layer is formed on a concave-convex substrate used for the apparatus and cured, thereby planarizing the concave-convex substrate.
Abstract:
An LCD panel with mixed substrate materials and a method of making the LCD panel are presented. The LCD panel is made of a first substrate, a second substrate disposed substantially parallel to the first substrate, and a liquid crystal layer disposed between the first substrate and the second substrate. The first substrate includes a glass substrate, a TFT formed on the glass substrate, and a color filter formed on the TFT. The second substrate includes a plastic substrate and a common electrode formed on the plastic substrate. Forming the color filter on the TFT eliminates the need to form black matrices on the second substrate, preventing misalignment of the two substrates due to different heat sensitivities. Since there is no concern of substrate misalignment caused by heat, laser beam can be used to cut the substrates during the manufacture of the LCD panel.