Abstract:
A method of monitoring combustion properties in an interior of a furnace is described. A beam of light is projected through a pitch optic including a pitch collimating lens residing outside the boiler interior. The pitch collimating lens projects the beam through a penetration into the boiler interior. The beam of light projected by the pitch collimating lens is reflected from at least one in-furnace retro-reflector, and received with a catch optic substantially identical to the pitch optic residing outside the boiler interior. The pitch optic and the catch optic may be embodied in the same pitch/catch optic. The pitch collimating lens may also be steered toward another of the at least one in-furnace retro-reflectors. Combustion properties may be calculated for each retro-reflector based on retro-reflector zones within the furnace.
Abstract:
A fiber pigtail template assembly includes first and second silicon wafers each having a planar surface with a plurality of corresponding grooves therein extending from a leading edge toward a trailing edge. The plurality of corresponding grooves, with the planar surfaces in abutment and the corresponding grooves aligned define a plurality of fiber channels. The first and second silicon wafers further cooperatively define a receptacle between the fiber channels and the trailing edges of the first and second silicon wafers with the planar surfaces of the silicon wafers in abutment with the grooves aligned. A minor diameter leading portion of an optical fiber is received in each fiber channel and the receptacle is sized to receive major diameter trailing portions of each fiber without causing a bending radius of the fiber sufficient to materially degrade wavelength propagation.
Abstract:
A method of monitoring combustion properties in an interior of a boiler of the type having walls comprising a plurality of parallel steam tubes separated by a metal membrane. First and second penetrations are provided in the metal membrane between adjacent tubes on opposite sides of the boiler. A beam of light is projected through a pitch optic comprising a pitch collimating lens and a pitch relay lens, both residing outside the boiler interior. The pitch relay lens projects the beam through a penetration into the boiler interior. The beam of light is received with a catch optic substantially identical to the pitch optic residing outside the boiler interior. The strength of the collimated received beam of light is determined. At least one of the pitch collimating lens and the catch collimating lens may then be aligned to maximize the strength of the collimated received beam.
Abstract:
An apparatus for measuring combustion properties within a measurement area comprises an elongate housing having a housing wall, the elongate housing having a distal end. A transmitting and receiving optic pair resides within the distal end of the housing and optically communicates with a sensing region outside the housing. A reflective surface is cantilevered from the distal end of the housing to define the sensing region therebetween. The reflective surface is configured to reflect a beam in optical communication from the transmitting optic to the receiving optic through the sensing region. Also disclosed is a method of measuring a combustion property within a select zone of a measurement area.
Abstract:
A method for measuring combustion parameters within a combustion zone of a gas turbine engine, the combustion zone being defined between an inner and outer casing. The method comprises transmitting a beam from a transmit optic optically coupled to a bore in the outer casing off a portion of the inner casing and receiving a portion of the beam reflected off the inner casing with a receiving optic optically coupled to a bore in the outer casing. An apparatus for practicing the method comprises a laser generating a beam and a transmitting/receiving optics pair, the transmitting/receiving optics pair being configured for operative association with a port in an outer casing of a gas turbine engine, whereby the transmitting/receiving optics are in optical communication by reflecting the beam off a portion of an inner casing.
Abstract:
An optical mode noise averaging device (300) including a multimode optical fiber (302) and means (308) for averaging a modal noise induced signal level variation of light propagating within the multimode optical fiber (302). The device may average modal noise induced signal level variations by cyclically varying an index of refraction of the multimode optical fiber (302) over a select period of time, scrambling a light distribution within the multimode optical fiber (302), or both. The index of refraction of the multimode optical fiber may be cyclically varied by cyclically varying the temperature of the multimode optical fiber (302). Alternatively, the index for refraction may be varied or the light distribution within the multimode optical fiber may be scrambled by cyclically manipulating the multimode optical fiber (302).
Abstract:
An apparatus and method are provided employing a single set of reduced-cost optics for (de)multiplexing optical signals whereby the resultant signals have a flat-top response with increased channel spacing. One aspect of the present invention uses an optical interleaver (310) to separate channels from an input multichannel (multiplexed) optical signal (302) with a select channel spacing into, for example, two input signals consisting of alternating channels at twice the select channel spacing. The separated signals are then directed to a multiple-input, such as dual-input, (parallel)(de)multiplexer device (320) which further spacially separates the channels for coupling with single channel transmission fibers (3221-n, 3241-n). The input fibers to the (de)multiplexer are preferably offset relative to each other to accommodate channel shift resulting from the interleaver.
Abstract:
A method of monitoring blockage of a sight tube attached to a wall of a process chamber, the sight tube being operatively associated with a TDLAS optical head with a window between the sight tube and the TDLAS optical head. The method includes the steps of providing a photo sensor in the TDLAS optical head, the photo sensor being positioned to receive light emitted by a light emitting process within the process chamber. An emission signal produced by light emitted by the light emitting process within the process chamber being received by the photo sensor is monitored. A determination is made if the emission signal is degrading.
Abstract:
A method of monitoring combustion properties in an interior of a furnace is described. A beam of light is projected through a pitch optic including a pitch collimating lens residing outside the boiler interior. The pitch collimating lens projects the beam through a penetration into the boiler interior. The beam of light projected by the pitch collimating lens is reflected from at least one in-furnace retro-reflector, and received with a catch optic substantially identical to the pitch optic residing outside the boiler interior. The pitch optic and the catch optic may be embodied in the same pitch/catch optic. The pitch collimating lens may also be steered toward another of the at least one in-furnace retro-reflectors. Combustion properties may be calculated for each retro-reflector or based on retro-reflector zones within the furnace.
Abstract:
An apparatus and methods for measuring combustion parameters in the measurement zone of a gas turbine engine. The measurement zone is defined as being between an outer casing and an engine component having a reflecting surface inside the outer casing. The apparatus comprises a laser generating a transmitting beam of light of a select wavelength and a multimode transmitting fiber optically coupled to the laser. A transmitting optic is optically coupled to the multimode optical fiber for transmitting the beam into the measurement zone. The reflecting surface is configured to provide a Lambertian reflection. A receiving optic is positioned to receive the Lambertian reflection. Means are provided in operative association with the multimode transmitting fiber for averaging modal noise induced signal level variation of light propagating within the multimode transmitting fiber.