-
公开(公告)号:CN107623068A
公开(公告)日:2018-01-23
申请号:CN201710839315.9
申请日:2017-09-18
Applicant: 中北大学
IPC: H01L41/047 , H01L41/113 , H01L41/22 , H02N2/18
Abstract: 本发明公开了一种基于叉指电极结构的薄膜式压电纳米发电机,包括压电薄膜层和叉指电极薄膜层;所述叉指电极薄膜层由单边电极A和单边电极B构成;所述叉指电极薄膜层半嵌入压电薄膜层中。其中,所述压电薄膜层通过将压电材料填充到柔性聚合物材料中制得;所述叉指电极薄膜层中的单边电极A和单边电极B均是通过将导电颗粒填充到柔性聚合物材料中制得。该纳米发电机通过采用d33耦合模式,在保证良好的柔性和可拉伸性的基础上,解决了普通压电式纳米发电机在d31耦合模式下存在的输出电压小的问题。
-
公开(公告)号:CN106130499A
公开(公告)日:2016-11-16
申请号:CN201610538711.3
申请日:2016-07-11
Applicant: 中北大学
CPC classification number: H03H3/02 , H03H9/02047 , H03H2003/023 , H03H2009/02173
Abstract: 本发明属于智能微纳器件与系统技术领域,发明了一种基于相变致动效应的新型薄膜体声波谐振器(FBAR),包括硅基底(5),所述硅基底(5)上下覆盖正面氧化层(4)和背面氧化层(6);其特征在于:所述正面氧化层(4)上生长下电极层(3),所述下电极层(3)上表面生长反铁电材料的PLZT薄膜层(2),所述PLZT薄膜层(2)上生长上电极层(1)。本发明将反铁电PLZT薄膜材料作为FBAR的功能层,利用其相变应变效应作为谐振器件机制,可以获得高的谐振频率;同时,材料较大的横向应变对于器件在液态中的Q值提高具有重要意义。
-
公开(公告)号:CN105915117A
公开(公告)日:2016-08-31
申请号:CN201610243461.0
申请日:2016-04-19
Applicant: 中北大学
Abstract: 本发明公开了一种摩擦?压电?磁电复合式振动微能源采集器,将一块磁铁悬浮起来作为微型能源采集器的敏感单元,提高了敏感部件的灵敏度,从而实现机械能的采集;同时,通过将具有互补工作模式的压电、磁电、摩擦三种发电单元集成,从而实现对机械能的高效采集。由中间向两侧,采集器依次包含电磁铁、摩擦薄膜、电磁感应线圈、压电层和结构基座,电磁层采用磁悬浮设计,避免了传统结构中敏感元件上面的机械连接,可以感应更微小的机械振动;压电层采用了一端固定并连接电极,另一端错位支撑的结构设计,而且利用磁场同极相斥的原理,感应敏感元件(悬浮磁铁)的位移变化,使压电薄膜发生形变。摩擦层采用叠放双层膜的方式,利用悬浮磁铁震动接触摩擦层,在两层摩擦膜之间感应电荷。
-
公开(公告)号:CN105846642A
公开(公告)日:2016-08-10
申请号:CN201610243463.X
申请日:2016-04-19
Applicant: 中北大学
IPC: H02K35/02
CPC classification number: H02K35/02
Abstract: 本发明提供一种磁体阵列平面转动式能量采集器,主要依靠紧贴于圆环形永磁铁侧壁上的两块圆形永磁铁转动时的相互作用。外界振动导致其中一块圆形永磁铁产生一定的加速度,当具有一定加速度的圆形永磁铁靠近另一块圆形永磁铁的磁场范围时,两块圆形永磁铁间磁场的斥力作用,导致另一块圆形永磁铁也产生加速度,两块圆形永磁铁间不停的往复运动,且位置改变迅速,直至由于转动永磁铁与圆环形永磁铁侧壁的摩擦作用以及电磁阻尼作用使转动永磁铁中两块圆形永磁铁重新恢复磁场平衡状态为止,至此一次对外界振动的感应过程完成。可最大限度的将外界振动能量转化为电能,能量采集和转化效率较高,应用前景广阔。
-
公开(公告)号:CN104925734B
公开(公告)日:2016-08-03
申请号:CN201510169545.X
申请日:2015-04-13
Applicant: 中北大学
Abstract: 本发明公开了一种近场热辐射高效传热无装药MEMS发火芯片及其制备方法,该发火芯片自下而上依次包括SiO2底层、下粘接Ti层、下电极Au层、近场热辐射层、中粘接Ti层、上电极Au层、SiO2腔支撑层、上粘接Ti层、Al层和CuO层,近场热辐射层和SiO2腔支撑层构成高效传热结构,CuO层和Al层构成含能金属材料层,CuO层和Al层为多层交替设置。本发明将焦耳热通过近场热辐射效应高效传递给含能材料,减少了无装药MEMS发火芯片的热散失,提高了能量利用率和总体发火输出;用含能金属替代传统火工药剂改善了含能材料与换能元紧密接触难问题。本发明有利于提高无装药MEMS发火芯片的发火能力和可靠性。
-
公开(公告)号:CN105136350A
公开(公告)日:2015-12-09
申请号:CN201510246997.3
申请日:2015-05-15
Applicant: 中北大学
IPC: G01L1/14
Abstract: 本发明公开了一种近场耦合无线无源超高温压力传感器及其制备方法,该传感器由近场耦合力敏结构、耐高温波导和耐高温天线构成,所述近场耦合力敏结构由平面谐振器、介质层或金属与介质复合层构成,所述介质层或金属与介质复合层构成力敏膜,平面谐振器和介质层或金属层之间使用空心耐高温筒体隔开。本发明以近场耦合理论作为压力信号、电磁场耦合依据设计力敏结构,极大的减少了传感器体积和压力信号、电磁场耦合灵敏度;基于近场耦合理论的近场耦合力敏结构无需侧壁涂覆金属,降低了加工难度,避免了腔内壁转角、折弯及形状突变处金属涂覆,保证了金属涂层与基片粘接可靠性,进而保证本超高温压力传感器可靠性。
-
公开(公告)号:CN102568817A
公开(公告)日:2012-07-11
申请号:CN201210051164.8
申请日:2012-03-01
Applicant: 中北大学
Abstract: 本发明涉及电容器及其制造技术,具体是一种基于三维硅微结构的MEMS电容器及其制造方法。本发明解决了现有MEMS微型电容器抗过载能力低、容量体积比小、环境适应性差、以及可靠性差的问题。一种基于三维硅微结构的MEMS电容器包括硅基底;硅基底上表面加工有大比表面积三维深槽结构;硅基底上表面和大比表面积三维深槽结构内腔表面形成有电学绝缘层;电学绝缘层上表面形成有下电极层;下电极层上表面形成有电介质层;电介质层上表面形成有上电极层;下电极层部分曝露于上电极层外。本发明是一种全固态静电式MEMS电容器,其完全满足引信电源、MEMS微能源、交通运输等领域中的微型化、智能化、集成化的发展需求。
-
公开(公告)号:CN118640144B
公开(公告)日:2024-10-22
申请号:CN202411124032.2
申请日:2024-08-16
Applicant: 中北大学
Abstract: 本发明属于发电机技术领域,尤其涉及一种基于液态金属的柔性足部能量采集装置,解决了现有足部能源采集装置难以兼具发电稳定、发电功率高、柔性化、缓冲减震及可靠性高的技术问题,其包括气囊式气缸和密封盒体,密封盒体中安装有涡轮风扇、转速放大齿轮组件、第一能量采集齿轮、第二能量采集齿轮、液态金属线和卷簧,密封盒体与气囊式气缸密封连接;第一能量采集齿轮和第二能量采集齿轮上延伸有圆柱形凸台,圆柱形凸台上设有环形凹槽,液态金属线的两端固连至两个环形凹槽中,液态金属线绕制后形成液态金属发电线圈,卷簧安装至第二能量采集齿轮的圆柱形凸台的卡槽中,第一能量采集齿轮和第二能量采集齿轮的中心轴外装有环形磁铁。
-
公开(公告)号:CN118640144A
公开(公告)日:2024-09-13
申请号:CN202411124032.2
申请日:2024-08-16
Applicant: 中北大学
Abstract: 本发明属于发电机技术领域,尤其涉及一种基于液态金属的柔性足部能量采集装置,解决了现有足部能源采集装置难以兼具发电稳定、发电功率高、柔性化、缓冲减震及可靠性高的技术问题,其包括气囊式气缸和密封盒体,密封盒体中安装有涡轮风扇、转速放大齿轮组件、第一能量采集齿轮、第二能量采集齿轮、液态金属线和卷簧,密封盒体与气囊式气缸密封连接;第一能量采集齿轮和第二能量采集齿轮上延伸有圆柱形凸台,圆柱形凸台上设有环形凹槽,液态金属线的两端固连至两个环形凹槽中,液态金属线绕制后形成液态金属发电线圈,卷簧安装至第二能量采集齿轮的圆柱形凸台的卡槽中,第一能量采集齿轮和第二能量采集齿轮的中心轴外装有环形磁铁。
-
公开(公告)号:CN112985387B
公开(公告)日:2023-08-11
申请号:CN202110139875.X
申请日:2021-02-01
Applicant: 中北大学
Abstract: 本发明涉及滑雪运动检测方法及系统,具体为一种GNSS与IMU的时间同步方法以及滑雪同步检测系统,解决了背景技术中的技术问题。所述方法基于互相关分析、零态检测、零速修正算法以及去趋势运算,实现了独立的IMU与GNSS的自动时间对齐;本发明基于所述时间同步方法搭建了搭载有臂/腿部传感单元、腰背部传感单元、两个雪板传感单元和无人机的滑雪同步检测系统,其包括五个数据源,数据同步部分对五个数据源进行处理实现时间同步,有助于进行准确的后处理分析、展示反馈,该系统能在不影响滑雪者动作的条件下实现滑雪者全程视频和运动学、生理参数的监测,帮助滑雪者和教练更好地了解运动学和生理参数对滑雪运动表现的影响,达到改进滑雪技术的目的。
-
-
-
-
-
-
-
-
-