-
公开(公告)号:CN105372996B
公开(公告)日:2019-05-17
申请号:CN201510993849.8
申请日:2015-12-25
Applicant: 北京交通大学
IPC: G05B13/04
Abstract: 本发明公开了一种基于马尔可夫跳跃系统的列车容错控制方法,包括如下步骤:S1、对列车车厢进行受力分析,建立列车车厢动力方程;S2、根据列车车厢动力模型,建立列车动力方程;S3、根据列车动力方程,建立列车状态空间方程;S4、根据列车状态空间方程,利用双马尔可夫链建立列车容错控制系统的闭环动态方程;S5、通过线性矩阵不等式得到列车容错控制系统的复合分层控制方法系数,并利用列车容错控制系统控制列车的实际位移和速度趋近期望位移和速度。本发明设计了复合分层控制策略使列车容错控制系统随机稳定,并使得列车容错控制系统具有良好的位置和速度跟踪性能。
-
公开(公告)号:CN105740556B
公开(公告)日:2019-04-05
申请号:CN201610074699.5
申请日:2016-02-02
Applicant: 北京交通大学
IPC: G06F17/50
Abstract: 本发明实施例提供了一种基于客流需求的列车运行图自动编制方法。该方法主要包括:根据基础参数和客流信息建立列车运行图优化模型,列车运行图优化模型包括;列车周期运行模型、列车到发时刻计算模型、列车顺序约束模型、列车满载率计算模型和目标函数模型;采用启发式算法和非线性规划相结合的双层规划算法来求解所述列车运行图优化模型,获取基于客流需求的列车运行图。本发明实施例不需要预先指定高、低峰时段及其对应间隔,且列车的运行间隔随客流需求自动变化;自动编制的列车运行图可满足折返时间、可运用车辆数、满载率等约束条件,保证运行图的可行性,且在满足客流需求的前提下,降低运营成本,可大大提高运行图的编制效率。
-
公开(公告)号:CN109410496A
公开(公告)日:2019-03-01
申请号:CN201811256568.4
申请日:2018-10-25
IPC: G08B13/196
Abstract: 本发明提供了一种入侵预警方法、装置及电子设备,该方法包括:根据视频帧图像判断指定区域内是否存在异常目标;如果是,确定异常目标的目标信息;该目标信息包括目标类别、目标位置、目标大小、目标速度、目标轨迹中的一种或多种;通过预先训练得到的分级预警模型生成目标信息对应的预警级别;其中,分级预警模型为一种深度神经网络模型;按照预警级别进行预警。本发明能够较好地确定出入侵物信息,并基于入侵物信息进行分级报警,有助于相关人员有针对性地采取措施,进一步保障铁路运营的安全性。
-
公开(公告)号:CN106828541B
公开(公告)日:2019-01-15
申请号:CN201710050784.2
申请日:2017-01-23
Applicant: 北京交通大学
Abstract: 本发明提供了一种适合于车‑车通信的列控系统车载联锁的进路防护方法。该方法包括:车载联锁设备周期性地从车载管理设备获得列车位置,当所述列车位置满足进路触发时机,车载联锁设备从联锁表中搜索相关的进路信息,获得该进路号对应的进路元素和进路元素所属的目标控制器,周期性地查询进路元素的状态信息;根据列车的位置将整个车载联锁的进路防护部分保护分成不同阶段,根据获取的进路元素的状态信息和列车位置信息,在不同阶段分别进行车载联锁的进路检查、进路锁闭和信号开放、进路解锁和故障处理。本发明充分考虑了车‑车通信列控系统中车载联锁的设计特点,可以满足面向低密度运输路网的安全、高效运营和持续能力保障的需求。
-
公开(公告)号:CN108960029A
公开(公告)日:2018-12-07
申请号:CN201810247186.9
申请日:2018-03-23
Applicant: 北京交通大学
CPC classification number: G06K9/00369 , G06K9/6256 , G06K9/6269
Abstract: 本发明提供了一种行人分心行为检测方法。该方法包括:采用梯度和纹理特征集成方法对行人图像进行行人检测处理,获取所述行人图像中的行人位置信息;根据所述行人的位置区域采用选择性搜素的方法对所述行人图像进行区域分割和合并处理,检测出行人敏感部位图像,对所述行人敏感部位图像进行特征提取,得到所述行人图像的敏感特征矩阵;利用行人图像数据集中所有行人图像的敏感部位特征矩阵训练Adaboost分类器,将待检测的行人图像输入训练好的Adaboost分类器,所述Adaboost分类器输出所待检测的行人图像的检测结果。本发明的方法可以准确及时地对行人行为进行分析,判断该行人是否为使用手机的危险行人并及时反馈给行人、司机以及交管部门,起到安全警示作用。
-
公开(公告)号:CN106156890B
公开(公告)日:2018-06-29
申请号:CN201610533001.1
申请日:2016-07-07
Applicant: 北京交通大学
IPC: G06Q10/04
Abstract: 本发明公开了一种城市轨道交通通道内客流检测和预测方法,该方法的步骤包括:基于光传感技术,对通道进口处和出口处的客流量进行采集S1、基于社会力模型,构建通道两端客流流出量与通道内客流密度之间的关系,并计算获得行人密度与流出量之间的经验值S2和构建待检测通道的黑箱计算模型,并利用所述经验值和当前时刻通道的进出口处的客流量,计算当前时刻通道内的客流密度信息以及下一时刻的客流密度信息S3。本发明进一步公开了一种城市轨道交通通道内客流检测和预测系统。采用本方案能够有效地避免因客流密度过大所造成的安全隐患。本发明可以有效地解决城市轨道交通中大曲率通道的客流检测和预测问题,具有很强的创新性、实用性和科研价值。
-
公开(公告)号:CN106476857B
公开(公告)日:2018-06-22
申请号:CN201610913133.7
申请日:2016-10-19
Applicant: 北京交通大学
Abstract: 本发明实施例公开一种轨道交通调度指挥系统及方法,所述系统包括:应用服务器、工作站、编辑工作站、以及多个单线自动列车监控系统;多个单线自动列车监控系统用于对各自运营线路上的列车运行进行控制,并通过接口设备与应用服务器连接;编辑工作站与应用服务器连接,用于编辑整个路网和/或各运营线路的运营计划;工作站与应用服务器连接,用于监控各运营线路的运营信息、对应用服务器下达控制指令;应用服务器用于获取各运营线路的运营信息、执行控制指令、并向各单线自动列车监控系统下发运营计划。本发明实施例公开的轨道交通调度指挥系统,可实现多条线路的调度指挥、整个路网的运营状况实时监督、计划组织以及不同线路间的跨线调度指挥。
-
公开(公告)号:CN105835914B
公开(公告)日:2018-02-23
申请号:CN201610339221.0
申请日:2016-05-19
Applicant: 北京交通大学
IPC: B61L27/04
Abstract: 本发明实施例提供了一种去除不必要牵引的列车节能运行控制方法。该方法主要包括:基于ATO系统获取列车运行牵引制动级位,根据列车运行牵引制动级位判断列车的当前位置是否为牵引点;当列车的当前位置为牵引点时,计算出列车当前已运行的时间t、列车在当前位置采用惰行方式至制动停车的运行时间Tc和牵引能耗Ec、列车在当前位置采用牵引方式至制动停车的运行时间Tt和牵引能耗Et;根据Ta,t,Tc,Ec,Tt,Et判断列车是否在当前位置不施加牵引,以惰行方式至制动停车。本发明可在列车牵引点处分别预测采用牵引或惰行方式至制动停车的运行时间和能耗,实时决策是否采用惰行方式至制动进站停车,实现避免不必要的牵引工况,从而减少列车运行牵引能耗。
-
公开(公告)号:CN106249591B
公开(公告)日:2017-07-28
申请号:CN201610822076.1
申请日:2016-09-13
Applicant: 北京交通大学
IPC: G05B13/02
Abstract: 本发明涉及一种针对列车未知扰动的神经自适应容错控制方法。在对列车纵向运动进行受力分析的基础上,建立列车的纵向运动动力方程,根据执行器故障和列车纵向运动动力方程,利用神经网络径向基函数逼近未知附加阻力,建立执行器故障情况下的列车纵向运动动力方程,然后构造比例积分微分滑模面。根据执行器故障情况下的列车纵向运动动力方程,利用未知自适应律和控制器,建立列车闭环动态方程。证明系统的稳定性,进而利用观测器和控制器方程控制列车实际的位移和速度趋近期望的位移和速度。本发明能够补偿执行器故障对列车系统的影响,衰减或去除附加阻力对列车系统的影响,使列车系统具有良好的位置和速度跟踪性能。
-
公开(公告)号:CN106809254A
公开(公告)日:2017-06-09
申请号:CN201611179609.5
申请日:2016-12-19
Applicant: 北京交通大学
IPC: B61L27/04
CPC classification number: B61L27/0038 , B61L27/04 , B61L2027/005
Abstract: 本发明提供了一种车载控制器安全控制轨旁设备的方法,该方法包括:列车进入某条进路,车载控制器根据进路表获取所述进路对应的轨旁控制器,向所述轨旁控制器发送申请所述进路中的轨旁设备的控制权的请求,所述轨旁控制器向所述车载控制器返回所述轨旁设备的控制权,所述车载控制器通过所述轨旁控制器对所述进路中的轨旁设备进行操作,操作完毕后,所述车载控制器将所述轨旁设备的控制权归还给所述轨旁控制器。本发明通过设计控制权机制可以实现车载控制器和轨旁控制器的协同控制,确保车载控制器对轨旁设备控制的安全性,并通过实现多个车载控制器对该轨旁设备期望状态一致时,可同时使用该轨旁设备,提高系统效率。
-
-
-
-
-
-
-
-
-