Abstract:
PURPOSE: An inkjet printing device and a nozzle forming method are provided to form a micro nozzle of a tapered form whose cross sectional area becomes smaller near an outlet. CONSTITUTION: An inkjet printing device comprises a flow path-forming board, a nozzle board(111), and an actuator. A pressure chamber is formed on the flow path forming board. The nozzle board is arranged under the flow path forming board and includes a nozzle(128) for discharging ink. The actuator provides a driving power for discharging the ink inside the pressure chamber through the nozzle. The nozzle board includes a first nozzle board(10) and a second nozzle board(20). A first nozzle unit(30) of a tapered form which is connected to the pressure chamber is formed on the first nozzle board. A second nozzle unit(40) of a tapered form which is connected to the first nozzle unit is formed on the second nozzle board.
Abstract:
PURPOSE: A thin film transistor and a method for manufacturing a thin film transistor are provided to control an ink droplet discharged from a nozzle, thereby changing the width and the printing shape of a pattern. CONSTITUTION: A gate(212) and at least one insulating film(220) are successively formed on a substrate(200). A source electrode(231) and a drain electrode(232) are formed on the insulating layer. A channel layer(240) is made of a semiconductor which is formed on the source electrode and the drain electrode. A pixel electrode(270) is electrically connected to the drain electrode. The gate, the source electrode, and the drain electrode are formed by using a hybrid inkjet printing apparatus.
Abstract:
PURPOSE: A nozzle plate and a manufacturing method thereof are provided to discharge liquid drops having precise volume by forming a permittivity reduction zone on the upper part of a substrate around a nozzle. CONSTITUTION: A nozzle plate includes: a substrate(110) having a nozzle; a permittivity reduction zone formed on the upper part of the substrate around a nozzle and provided with many pores and many partition walls formed between the pores; and a protective film(130) formed on the substrate to cover the pores and the partition walls.
Abstract:
크로스토크를 감소시킬 수 있는 압전 방식의 잉크젯 프린트 헤드와 그 제조방법이 개시되어 있다. 개시되어 있는 압전 방식의 잉크젯 프린트 헤드는 잉크의 토출을 위한 구동력을 제공하는 압전 액츄에이터; 상기 압전 액츄에이터가 상면에 설치되고, 잉크가 도입되는 잉크 도입구가 관통 형성되며, 토출될 잉크가 채워지는 압력 챔버와 상기 압력 챔버의 폭보다 작은 폭으로 상기 압력 챔버에서 연장되는 제 1 리스트릭터가 그 저면에 형성되는 상부 기판; 상기 잉크 도입구와 연결되어 유입된 잉크가 저장되는 매니폴드가 그 저면으로부터 소정 깊이로 형성되고, 상기 제 1 리스트릭터와 연계하여 상기 매니폴드로부터 상기 압력 챔버로 잉크가 유입되도록 하는 제 2 리스트릭터가 상기 제 1 리스트릭터와 연결 형성되며, 상기 압력 챔버의 타단부에 대응되는 위치에 댐퍼가 관통 형성된 중간 기판; 및 상기 댐퍼와 대응되는 위치에 잉크를 토출하기 위한 노즐이 관통 형성된 하부 기판;을 구비하며, 상기 하부 기판, 중간 기판 및 상부 기판은 순차적으로 적층되어 서로 접합되며, 모두 단결정 실리콘 기판으로 이루어진다. 개시되어 있는 압전 방식의 잉크젯 프린트 헤드 및 그 제조방법에 의하면, 중간 기판의 저면을 가공하여 매니폴드를 형성하고 이를 압력 챔버의 하부에 설치함으로써 매니폴드의 폭을 용이하게 증가시킬 수 있다. 따라서, 매니폴드의 체적이 증가되어 다수 노즐에서 동시에 잉크가 토출될 때 인접한 리스트릭터 사이에 발생되는 크로스토크가 저감될 수 있는 효과가 있다. 또한, 매니폴드의 단면적이 증가되어 재충전 과정에서 잉크 공급 유량이 증 대되므로 고주파수의 토출 시에도 안정적인 작동이 가능한 장점이 있다.
Abstract:
A multilayered wafer with a thick sacrificial layer, which is obtained by forming a sacrificial layer of oxidized porous silicon or porous silicon and growing an epitaxial polysilicon layer on the sacrificial layer, and a fabrication method thereof are provided. The multilayered wafer with a thick sacrificial layer adopts a porous silicon layer or an oxidized porous silicon layer as a sacrificial layer such that a sufficient gap can be obtained between a substrate and a suspension structure upon the manufacture of the suspension structure of a semiconductor actuator or a semiconductor inertia sensor. Also, in a fabrication method of the wafer according to the present invention, a p -type or n -type wafer doped at a high concentration is prepared for, and then a thick porous silicon layer can be obtained simply by anodic-bonding the surface of the wafer. Also, when polysilicon is grown on a porous silicon layer by an epitaxial process, it is grown faster than when single crystal silicon is grown.
Abstract:
PURPOSE: A multilayer wafer is to form a porous silicon or a porous oxidized silicon as a sacrifice layer, thereby securing an enough space between a substrate and a depending structure. CONSTITUTION: A method of a multilayer wafer comprises steps of: preparing a doped p¬+ and n¬+ wafer as a substrate wafer(1); forming a porous silicon layer by a predetermined thickness on a surface of the wafer by an anode reaction; making an oxidized a porous silicon layer(3) by oxidizing the porous silicon layer using a thermal oxidation process; depositing a poly silicon seed layer on the porous oxidized silicon layer using a method of chemical vapor deposition; growing an epitaxial poly-silicon layer on the porous oxidized silicon layer using the poly-silicon seed layer. Because a porosity of silicon is varied upon a concentration and a current density of a fluoric acid, if the porosity is set to 55%, the porous oxidized silicon layer can be grown without a transformation of the wafer by a volumetric expansion, thereby solving a problem for an air resistance and sticking.
Abstract:
PURPOSE: A three-dimensional comb structure is provided to increase an electrostatic force through the increase of the number of combs per a unit area by manufacturing combs in vertical directions on a suspension structure and a substrate. CONSTITUTION: A suspension structure(42) is floated while maintaining a certain gap with a substrate to sense inertia movements and to be oscillated on the substrate. At least one or more elastic members(44) are connected to the suspension structure(42) in order to enable the suspension structure(42) to be oscillated. At least one or more supporters(45) are connected to the substrate to support the elastic members(44). A moving comb structure(43) is connected to the suspending structure(42) and has at least one comb formed to be protruded.