Abstract:
이온 빔 소스의 양극 지지부는 이온 빔 소스의 몸체를 관통하여 양극을 지지하고, 양극 내부로 냉매를 순환시키기 위한 유로를 가지며, 양극으로 전력을 공급하기 위해 도전성 물질로 이루어지는 제1 구조물 및 제1 구조물과 몸체가 전기적으로 연결되는 것을 방지하기 위해 절연 물질로 이루어지며 제1 구조물을 감싸도록 구비되는 제2 구조물을 포함할 수 있다. 따라서, 양극 지지부는 양극을 냉각시킬 수 있고, 몸체와 양극이 전기적으로 절연시킬 수 있다.
Abstract:
전자소자 및 그 제조방법이 제공된다. 본 발명의 개념에 따른 전자소자는 기판 상에 배치되는 보조배선들, 상기 기판 상에 제공되며, 상기 보조배선들 사이에 채워진 광추출층, 상기 보조배선들 및 상기 광추출층 상에 제공된 제1 전극을 포함하되, 상기 광추출층은 상기 기판을 향하는 제1 면 및 상기 제1 면과 대향되는 제2 면을 가지며, 상기 제1 면은 돌출부들을 가지고, 상기 보조배선은 상기 제1 전극보다 낮은 저항을 가지는 물질을 포함할 수 있다. 전자소자는 전기적 특성이 향상되어, 균일한 발광특성을 구현할 수 있다.
Abstract:
The present invention provides a method for manufacturing a flexible substrate with a buried conducting trace using a modification layer, capable of fundamentally removing problems such as environment pollution, remaining foreign materials, the reduction of an electrical characteristic, and the reduction of a processing speed due to the use of an existing buffer layer by using the existing buffer layer (modification layer in case of the present invention) without removal. The method for manufacturing the flexible substrate with the buried conducting trace using the modification layer includes the steps of: forming the modification layer made of metal, conductive polymers, or carbon materials on a substrate; forming the conducting trace on the modification layer; forming a polymer film by coating and curing the polymer on the modification layer by including the conducting trace; removing the substrate from the polymer film by applying a physical force; and converting the modification layer into a transparent electrode by oxidization or reduction by emitting particles with charges to the modification layer exposed by removing the substrate.
Abstract:
이온 빔 소스는 내부 공간을 가지며 상면이 개방되고, 내부에 내부 공간으로 가스를 공급하기 위한 가스 공급홀들을 갖는 몸체와, 몸체의 상면에 구비되며, 내부 공간을 노출하는 개구를 갖는 음극 및 몸체의 내부 공간에 음극과 이격되도록 구비되며, 음극과의 간격을 넓히기 위해 개구와 대응하는 홈을 가지고, 외부로부터 인가되는 전원과 연동하여 음극과 사이에서 전기장을 형성하여 가스를 이온화하는 양극을 포함할 수 있다. 따라서, 이온 빔 소스에서 이온화 가스의 에너지를 저하시킬 수 있다.
Abstract:
An ion beam source may include a body which has an upper surface where a discharge space is formed, an inner part where a gas supply hole for supplying a gas into the discharge space is formed, an cathode which is formed in the upper surface of the body to expose the discharge space and has a combination hole having a shape corresponding to the upper surface of the body in a lower part to be arranged with the body, and an anode which is separated from the cathode in the discharge space and ionizes the gas by generating a high voltage between the anode and the cathode. Because the cathode is accurately arranged in the body, the ion beam source can uniformly generate ions.
Abstract:
이온빔 발생장치를 이용한 융복합 표면처리장치가 제공된다. 상기 융복합 표면처리장치는, 연속하여 공급되는 표면처리 대상을 표면 처리하도록 적어도 둘 이상의 공정실을 구비한 공정 용기 및 상기 각 공정실마다 설치되는 이온빔 발생장치를 포함하며, 상기 각 공정실의 이온빔 발생장치는 상기 표면처리 대상을 공정목적에 적합한 이온빔 에너지로 표면 처리한다.
Abstract:
The present invention relates to an organic light-emitting diode including a metal wiring-buried substrate and a method for manufacturing the same, and more specifically, to an organic light-emitting diode wherein a substrate, an anode, an organic light-emitting layer, and a cathode are laminated in order with the substrate having a metal wiring inside. The organic light-emitting diode including a metal wiring-buried substrate and a method for manufacturing the same according to the present invention are capable of reducing the resistance of electrodes (anode or cathode) formed on the substrate by burying a metal wiring into the substrate and has the effect of increasing the light output rate as light formed on the organic light-emitting layer due to the buried metal wiring scatters.
Abstract:
PURPOSE: A metal surface structure with an ultra water repellent property and a forming method thereof are provided to form a coating layer which has the ultra water repellant property on the outside of a protrusion after forming a micro-sized concavo-convex side on the surface of an object to be surface-treated, and integrally forming a nano-sized protrusion on the micro-sized concavo-convex surface. CONSTITUTION: A metal surface structure with an ultra water repellent property includes a micro sized concavo-convex side (12), and a nano-sized protrusion (14), and coating layer (18). The micro-sized concavo-convex side is integrally formed on a surface-treated object which includes aluminum. The nano-sized protrusion is integrally formed on the concavo-convex surface. The coating layer has an ultra water repellent property by being coated on the outside of the coating layer. The concavo-convex surface is formed on the surface-treated object by using an aluminum powder to perform sand-blasting on the surface-treated object. The protrusion is formed by irradiating the concavo-convex surface with an argon beam.
Abstract:
PURPOSE: A method for manufacturing a fibrous solar cell including a metal wire and the fibrous solar cell manufactured by the same are provided to obtain high energy conversion efficiency by forming the metal wire on a flexible substrate in comparison with a fibrous solar cell without the metal wire. CONSTITUTION: A large solar cell including a metal wire is manufactured on a flexible substrate. The manufactured large solar cell is cut with a fiber type. The flexible substrate is a polymer flexible substrate or a metal flexible substrate. The metal flexible substrate is made of one or more among Cu, Ni, Al, Fe, Cr, and stainless steel. The solar cell is cut by a slitting process or a laser process. [Reference numerals] (AA) ; (BB,JJ) Metal electrode; (CC) P-type conductive film; (DD) Optical active layer; (EE) N-type conductive film; (FF) Transparent electrode; (GG,KK) Metal wiring; (HH) Flexible substrate; (II)
Abstract:
PURPOSE: A depositing device using high density plasma and a method thereof are provided to expect an effect improving deposition performance, to deposit a substrate at a high speed, and to clean the substrate. CONSTITUTION: A depositing device using a high density plasma comprises; a chamber(10) with an outlet; a plasma generating unit(20) emitting the high density plasma to an internal space of the chamber; a magnetic field generating unit(50) forming a magnetic field for guiding the high density plasma; a target(30) activated by the high density plasma; and a substrate(40) deposited by the activation of a target. [Reference numerals] (1,2,3) Plasma induction magnetic field coil; (20) High density plasma source; (AA) Deposition substrate power supply; (BB) Deposition substrate; (CC) Sputtering target power supply