Abstract:
A splice tray includes a splice region and a fiber management region to facilitate splicing together two or more fibers. The splice tray can be pivotally coupled to one or more additional splice trays using pivot linkages to form a splice tray arrangement. A pivot linkage can include first and second laterally spaced coupling sections extending in opposite directions. A magnetic coupling arrangement can releasably secure the splice trays of a splice tray arrangement to one another.
Abstract:
A telecommunications device is disclosed. The telecommunications device includes a fixture and a plurality of adapter modules mounted on the fixture. The plurality of modules form adjacently stacked rows of adapter modules with each one of the modules including a plurality of adapters for connecting fiber optic connectors. Each row of adapter modules is labeled with a different color for ease of customer identification.
Abstract:
A telecommunications cabinet comprising a top, a floor, a pair of opposing sides, a front wall and a rear wall defining an interior, the front including an access door for accessing the interior. Within the interior are mounted a cable management structure, an adapter panel with an adapter configured to optical connector two optical fiber cables terminated with fiber optic connectors, and a fiber optic connector holder (110) mounted in openings of the adapter panel. The connector holder has an opening (116) configured to receive a fiber optic connector (200) with a dust cap (204), the opening accessible from a front side of the adapter panel. A fiber optic connector including a ferrule with a polished end face holding an end of an optical fiber with a dust cap placed about the ferrule and polished end face is inserted within the opening of a fiber optic connector holder. And a fiber optic connector is inserted within the rear side of one of the adapters.
Abstract:
A fiber optic telecommunications frame is provided including panels having front and rear termination locations, the panels positioned on left and right sides of the frame. The frame includes vertical access for the rear cables. The frame further includes left and right vertical cable guides for the front patch cables. The frame further includes cable storage spools for the patch cables. The frame includes a horizontal passage linking the left and right panels and the cable guides. A portion of the frame defines splice tray holders and a central passage from the splice tray holders to the rear sides of the left and right panels. From a front of each panel, access to a rear of the panel is provided by the hinged panels. Alternatively, the panels can form connector modules with front termination locations and rear connection locations for connecting to the rear cables. The modules can house couplers, such as splitters, combiners, and wave division multiplexers. The termination locations can be located on the same side of the frame as the splice tray holders, or on an opposite side. An enclosure of the frame included hinged or otherwise moveable panels to allow access to the terminations or the splice trays.
Abstract:
The present invention relates to the management of cables extending to and from fiber termination blocks with sliding angled fiber adaptor modules within a fiber distribution frame.
Abstract:
A fiber optic telecommunications device includes a frame and a fiber optic module including a rack mount portion, a center portion, and a main housing portion. The rack mount portion is stationarily coupled to the frame, the center portion is slidably coupled to the rack mount portion along a sliding direction, and the main housing portion is slidably coupled to the center portion along the sliding direction. The main housing portion of the fiber optic module includes fiber optic connection locations for connecting cables to be routed through the frame. The center portion of the fiber optic module includes a radius limiter for guiding cables between the main housing portion and the frame, the center portion also including a latch for unlatching the center portion for slidable movement. Slidable movement of the center portion with respect to the rack mount portion moves the main housing portion with respect to the frame along the sliding direction.
Abstract:
A pedestal terminal includes a frame mounted to a base and a cover configured to mount to the base. The frame including a support frame and a swing frame pivotally mounted to the support frame. A splitter module mounting location is positioned on the frame. The splitter module mounting location is adapted to mount a splitter arrangement including splitter pigtails to the frame. A first termination field includes a plurality of fiber optic adapters, each being configured to couple one of the splitter pigtails to a distribution cable. A second termination field includes a plurality of fiber optic adapters, each being configured to couple one of the splitter pigtails to a drop cable. A pivoting cover arrangement can be mounted to a top of the support frame to inhibit contact between the splitter arrangement and the cover when the cover is mounted to or removed from the base.
Abstract:
A fiber distribution hub defines at least one incoming cable port and at least one outgoing cable port. The fiber distribution hub includes a termination region, a splitter region, and a splice region. Some example hubs include a pass-through panel configured to manage a loop portion of a feeder cable. Some example hubs include a cable manager for managing distribution cables at the outgoing cable port. Some example hubs include pivotal splice tray stacks. Some example hubs include a swing frame on which the termination region and splitter region are positioned.
Abstract:
A wall box includes an enclosure having a base and a cover connected to the base. The base and the cover enclose an interior region. The wall box further includes a plurality of fiber optic adapters mounted to the enclosure. The fiber optic adapters include an inner port positioned inside the interior region and an outer port positioned at an outer surface of the enclosure. A tray stack is mounted within the interior region. The tray stack includes a tray mount pivotally connected to the enclosure. The tray mount includes a top surface and an oppositely disposed bottom surface. A first splice tray mounting area is disposed on the top surface and a second splice tray mounting area is disposed on the bottom surface. A plurality of trays is disposed in the first splice tray mounting area. A tray is disposed in the second splice tray mounting area.
Abstract:
The present invention relates to the management of cross-connect cables extending from fiber termination blocks with sliding fiber adaptor modules within a fiber distribution frame. A cable management divider is mounted onto a set of arcuate cable guides to direct the cables extending across the cable guides into cable channels. The purpose for providing these channels is to reduce the interference to movement and access of cables from fiber optic adpator modules in different areas of the fiber termination block. Depending on the density and configuration of the fiber adaptors and sliding modules within the fiber termination block, multiples sets of arcuate cable guides may be provided and multiple cable management divides may be mounted to the arcuate cable guides. The fiber distribution frame also incorporates a cable trough system to direct cables after the cables extend management dividers. The cable trough interior surface resists the sliding movement of cables laid in the trough is also provided. This resistance to sliding of cables is desirable since some degree of slack in the cables within the fiber termination block is necessary for proper sliding of the adaptor modules. If the cables are permitted to slide within the trough leading away from the fiber termination blocks, this necessary cable slack might be removed from the blocks.