Abstract:
The described embodiments relate generally to optimizing airflow in a computer system. By modifying the external surface of centrifugal cooling fan enclosures the pressure drop associated with airflow moving around the enclosures can be reduced. This is generally accomplished by rounding off hard edges from the outside of the cooling fan enclosure as well as forming cover surfaces rather than simply using flat cover surfaces. In some cases this can also involve modifying the shape of the fan inlet, or even contouring the shape of the cooling fan blades to allow air to flow more easily through the computer enclosure. Doc ID 1000470931
Abstract:
Electronic devices may use touch pads that have touch sensor arrays, force sensors, and actuators for providing tactile feedback. A touch pad may be mounted in a computer housing. The touch pad may have a rectangular planar touch pad member that has a glass layer covered with ink and contains a capacitive touch sensor array. Force sensors may be mounted under each of the four corners of the rectangular planar touch pad member. The force sensors may be used to measure how much force is applied to the surface of the planar touch pad member by a user. Processed force sensor signals may indicate the presence of button activity such as press and release events. In response to detected button activity or other activity in the device, actuator drive signals may be generated for controlling the actuator. The user may supply settings to adjust signal processing and tactile feedback parameters.
Abstract:
Electronic devices may use touch pads that have touch sensor arrays, force sensors, and actuators for providing tactile feedback. A touch pad may be mounted in a computer housing. The touch pad may have a rectangular planar touch pad member that has a glass layer covered with ink and contains a capacitive touch sensor array. Force sensors may be mounted under each of the four corners of the rectangular planar touch pad member. The force sensors may be used to measure how much force is applied to the surface of the planar touch pad member by a user. Processed force sensor signals may indicate the presence of button activity such as press and release events. In response to detected button activity or other activity in the device, actuator drive signals may be generated for controlling the actuator. The user may supply settings to adjust signal processing and tactile feedback parameters.
Abstract:
A portable computing device includes at least a base portion of a lightweight material that includes at least a wedge shaped top case having a trough formed at an interfacing edge thereof. The trough includes a raised shoulder portion having a first contact surface and a receiving area, and a bottom case coupled to the top case to form a complete housing for at least a portion of the portable computing device for enclosing at least a plurality of operational components and a plurality of structural components. The portable computing device also includes at least a lid portion pivotally connected to the base portion by a hinge assembly. In the described embodiments, the lid portion has a display in communication with one or more of the plurality of components in said base portion by way of or more electrical conductors that electrically connect the base portion to the lid portion.
Abstract:
Dispositivos electrónicos pueden utilizar paneles sensibles al tacto que tienen arreglos de sensores táctiles, sensores de fuerza, y activadores para proporcionar retroalimentación táctil. Un panel sensible al tacto puede montarse en un alojamiento de computadora. El panel sensible al tacto puede tener un miembro de panel sensible al tacto plano rectangular que tiene una capa de vidrio cubierta con tinta y contiene un arreglo de sensores táctiles capacitivos. Pueden montarse sensores de fuerza bajo cada una de las cuatro esquinas del miembro de panel sensible al tacto plano rectangular. Los sensores de fuerza pueden utilizarse para medir qué tanta fuerza se aplica a la superficie del miembro de panel sensible al tacto plano por un usuario. Las señales procesadas de sensores de fuerza pueden indicar la presencia de actividad de botones tales como eventos de presión y liberación. En respuesta a la actividad de botones detectada u otra actividad en el dispositivo, pueden generarse señales de conducción de activador para controlar el activador. El usuario puede suministrar parámetros para ajustar los parámetros de procesamiento de señales y retroalimentación táctil.
Abstract:
Embodiments of the present disclosure are directed to a haptic actuator or a device having a haptic actuator that is capable of producing short, sharp and crisp pulses in a short amount of time.
Abstract:
Electronic devices may use touch pads that have touch sensor arrays, force sensors, and actuators for providing tactile feedback. A touch pad may be mounted in a computer housing. The touch pad may have a rectangular planar touch pad member that has a glass layer covered with ink and contains a capacitive touch sensor array. Force sensors may be mounted under each of the four corners of the rectangular planar touch pad member. The force sensors may be used to measure how much force is applied to the surface of the planar touch pad member by a user. Processed force sensor signals may indicate the presence of button activity such as press and release events. In response to detected button activity or other activity in the device, actuator drive signals may be generated for controlling the actuator. The user may supply settings to adjust signal processing and tactile feedback parameters.
Abstract:
A hinge assembly having a hollow and partially annular clutch is arranged to pivotally couple a portable computer base portion to a portable computer lid portion. The hinge assembly includes at least an elongated, hollow and partially open cylindrical portion that includes a partially annular outer region and a central bore region, the central bore region suitably arranged to provide support for electrical conductors between the base and lid portions. The hinge assembly also includes a plurality of fastening components that couple the hollow clutch to the base portion and the lid portion of the portable computer, with at least one of the fastening regions being integrally formed with the hollow and partially open cylindrical portion such that space, size and part count are minimized.
Abstract:
A desktop computing system having at least a central core surrounded by housing having a shape that defines a volume in which the central core resides is described. The housing includes a first opening and a second opening axially displaced from the first opening. The first opening having a size and shape in accordance with an amount of airflow used as a heat transfer medium for cooling internal components, the second opening defined by a lip that engages a portion of the airflow in such a way that at least some of the heat transferred to the air flow from the internal components is passed to the housing.
Abstract:
An internal component and external interface arrangement for a cylindrical compact computing system is described that includes at least a structural heat sink having triangular shape disposed within a cylindrical volume defined by a cylindrical housing. A computing engine having a generally triangular shape is described having internal components that include a graphics processing unit (GPU) board, a central processing unit (CPU) board, an input/output (I/O) interface board, an interconnect board, and a power supply unit (PSU).