Abstract:
Methods, program products, and systems for reducing a location search space are described. A mobile device, when arriving at a venue, can determine a location of the mobile device using signals from one or more signal sources associated with the venue. The mobile device can use a coarse location estimator to estimate a coarse location of the mobile device at the venue. The mobile device can request, from a server, detailed location data associated with the coarse location. The detailed location data can include location fingerprint data associated with a portion of the venue that includes the coarse location. The mobile device can determine an estimated location that has finer granularity than the coarse location using the location fingerprint data.
Abstract:
A mobile device can be in multiple states of location determination. In each state, the mobile device can use a distinct subsystem to determine a location. A state machine of the mobile device can manage the states, including determining which state the mobile device is in and whether a transition between the states has occurred. A transition can be triggered by a sensor of the mobile device and confirmed by another sensor of the mobile device. When the state machine detects a transition, the mobile device can switch location determination from one subsystem to another subsystem, and change a map user interface to one that is best suited for the new subsystem.
Abstract:
Systems, methods, and program products for providing services to a user by a mobile device based on the user's daily routine of movement. The mobile device determines whether a location cluster indicates a significant location for the user based on one or more hints that indicate an interest of the user in locations in the cluster. The mobile device can perform adaptive clustering to determine a size of area of the significant location based on how multiple locations converge in the location cluster. The mobile device can provide location-based services for calendar items, including predicting a time of arrival at an estimated location of a calendar item. The mobile device can provide various services related to a location of the mobile device or a significant location of the user through an application programming interface (API).
Abstract:
Methods, program products, and systems for monitoring geofence exits using wireless access points are disclosed. In general, in one aspect, a mobile device can detect one or more entry gateways that are wireless access points selected for monitoring a geofence. The mobile device can determine that the mobile device is located in the geofence based on the detection. The mobile device can monitor the entry gateways and one or more exit gateways, which can be wireless access points observable by the mobile device when the mobile device is in the geofence. When the mobile device determines, after a number of scans using a wireless processor, that the entry gateways and exit gateways are unobservable, the mobile device can use an application processor to determine whether the mobile device has exited from the geofence.
Abstract:
Systems, methods, and program products for providing services to a user by a mobile device based on the user's daily routine of movement. The mobile device determines whether a location cluster indicates a significant location for the user based on one or more hints that indicate an interest of the user in locations in the cluster. The mobile device can perform adaptive clustering to determine a size of area of the significant location based on how multiple locations converge in the location cluster. The mobile device can provide location-based services for calendar items, including predicting a time of arrival at an estimated location of a calendar item. The mobile device can provide various services related to a location of the mobile device or a significant location of the user through an application programming interface (API).
Abstract:
A proximity fence can be a location-agnostic fence defined by signal sources having no geographic location information. The proximity fence can correspond to a group of signal sources instead of a point location fixed to latitude and longitude coordinates. A signal source can be a radio frequency (RF) transmitter broadcasting a beacon signal. The beacon signal can include a payload that includes an identifier indicating a category to which the signal source belongs, and one or more labels indicating one or more subcategories to which the signal source belongs. The proximity fence defined by the group of signal sources can trigger different functions of application programs associated with the proximity fence on a mobile device, when the mobile device moves within the proximity fence and enters and exits different parts of the proximity fence corresponding to the different subcategories.
Abstract:
Methods, program products, and systems for monitoring geofence exits using wireless access points are disclosed. In general, in one aspect, a mobile device can detect one or more entry gateways that are wireless access points selected for monitoring a geofence. The mobile device can determine that the mobile device is located in the geofence based on the detection. The mobile device can monitor the entry gateways and one or more exit gateways, which can be wireless access points observable by the mobile device when the mobile device is in the geofence. When the mobile device determines, after a number of scans using a wireless processor, that the entry gateways and exit gateways are unobservable, the mobile device can use an application processor to determine whether the mobile device has exited from the geofence.
Abstract:
Methods, program products, and systems for monitoring geofence exits using wireless access points are disclosed. In general, in one aspect, the mobile device can select, from multiple wireless access points, one or more wireless access points for monitoring a geofence. Selecting the one or more wireless access points can include determining multiple geographic regions corresponding to the geofence. The mobile device can select the one or more wireless access points based on a maximum total number of wireless access points to be selected and an access point allowance for each of the geographic regions. The access point allowance can indicate a maximum number of wireless access points to be selected for the geographic region. The mobile device can detect a potential entry or exit of the geofence by monitoring the selected one or more wireless access points using a wireless processor.
Abstract:
Techniques of category-based fence are described. A category-based fence can correspond to a group of signal sources instead of a point location fixed to latitude and longitude coordinates. The group of signal sources can represent a category of entities, e.g., a particular business chain. The signal sources can be distributed to multiple discrete locations. A category-based fence associated with the group, accordingly, can correspond to multiple locations instead of a single point location and a radius. Each signal source in the group can be associated with a category identifier unique to the group and uniform among signal sources in the group. The category identifier can be programmed into each signal source. A mobile device can enter the category-based fence by entering any of the discrete locations when the mobile device detects the signal identifier. The mobile device can then execute an application program associated with the category-based fence.